1
|
Dolgitzer D, Plaza-Rodríguez AI, Iglesias MA, Jacob MAC, Todd BA, Robinson DN, Iglesias PA. A continuum model of mechanosensation based on contractility kit assembly. Biophys J 2025; 124:62-76. [PMID: 39521955 PMCID: PMC11739882 DOI: 10.1016/j.bpj.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The ability of cells to sense and respond to mechanical forces is crucial for navigating their environment and interacting with neighboring cells. Myosin II and cortexillin I form complexes known as contractility kits (CKs) in the cytosol, which facilitate a cytoskeletal response by accumulating locally at the site of inflicted stress. Here, we present a computational model for mechanoresponsiveness in Dictyostelium, analyzing the role of CKs within the mechanoresponsive mechanism grounded in experimentally measured parameters. Our model further elaborates on the established distributions and channeling of contractile proteins before and after mechanical force application. We rigorously validate our computational findings by comparing the responses of wild-type cells, null mutants, overexpression mutants, and cells deficient in CK formation to mechanical stresses. Parallel in vivo experiments measuring myosin II cortical distributions at equilibrium provide additional validation. Our results highlight the essential functions of CKs in cellular mechanosensitivity and suggest new insights into the regulatory dynamics of mechanoresponsiveness.
Collapse
Affiliation(s)
- David Dolgitzer
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland.
| | - Alma I Plaza-Rodríguez
- Oncology-Quantitative Sciences Department, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Miguel A Iglesias
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Mark Allan C Jacob
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bethany A Todd
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
2
|
Qu C, Lu J, Chen Y, Li J, Xu X, Li F. Unravelling the role of gut microbiota in acute pancreatitis: integrating Mendelian randomization with a nested case-control study. Front Microbiol 2024; 15:1401056. [PMID: 39021624 PMCID: PMC11253135 DOI: 10.3389/fmicb.2024.1401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Gut microbiota may influence the development of acute pancreatitis (AP), a serious gastrointestinal disease with high morbidity and mortality. This study aimed to identify a causal link by investigating the relationship between gut microbiota and AP. Methods Mendelian randomization (MR) and a nested case-control study were used to explore associations between gut microbiota composition and AP. 16S rRNA sequencing, random forest modelling (RF), support vector machine (SVM), and Kaplan-Meier survival analysis was applied to identify significant gut microbiota and their correlation with hospitalization duration in AP patients. Results Bidirectional MR results confirmed a causal link between specific gut microbiota and AP (15 and 8 microbial taxa identified via forward and reverse MR, respectively). The 16S rRNA sequencing analysis demonstrated a pronounced difference in gut microbiota composition between cases and controls. Notably, after a comprehensive evaluation of the results of RF and SVM, Bacteroides plebeius (B. plebeius) was found to play a significant role in influencing the hospital status. Using a receiver operating characteristic (ROC) curve, the predictive power (0.757) of B. plebeius. Kaplan-Meier survival analysis offered further insight that patients with an elevated abundance of B. plebeius experienced prolonged hospital stays. Conclusion Combining MR with nested case-control studies provided a detailed characterization of interactions between gut microbiota and AP. B. plebeius was identified as a significant contributor, suggesting its role as both a precursor and consequence of AP dynamics. The findings highlight the multifactorial nature of AP and its complex relationship with the gut microbiota. This study lays the groundwork for future therapeutic interventions targeting microbial dynamics in AP treatment.
Collapse
Affiliation(s)
- Chang Qu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongyan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing Xu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Nguyen JMK, Liu Y, Nguyen L, Sidhaye VK, Robinson DN. Discovery and Quantitative Dissection of Cytokinesis Mechanisms Using Dictyostelium discoideum. Methods Mol Biol 2024; 2814:1-27. [PMID: 38954194 DOI: 10.1007/978-1-0716-3894-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The social amoeba Dictyostelium discoideum is a versatile model for understanding many different cellular processes involving cell motility including chemotaxis, phagocytosis, and cytokinesis. Cytokinesis, in particular, is a model cell-shaped change process in which a cell separates into two daughter cells. D. discoideum has been used extensively to identify players in cytokinesis and understand how they comprise the mechanosensory and biochemical pathways of cytokinesis. In this chapter, we describe how we use cDNA library complementation with D. discoideum to discover potential regulators of cytokinesis. Once identified, these regulators are further analyzed through live cell imaging, immunofluorescence imaging, fluorescence correlation and cross-correlation spectroscopy, micropipette aspiration, and fluorescence recovery after photobleaching. Collectively, these methods aid in detailing the mechanisms and signaling pathways that comprise cell division.
Collapse
Affiliation(s)
- Jennifer M K Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yinan Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ly Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Plaza-Rodríguez AI, Nguyen LTS, Robinson DN, Iglesias PA. Particle-based model of mechanosensory contractility kit assembly. Biophys J 2022; 121:4600-4614. [PMID: 36273263 PMCID: PMC9748368 DOI: 10.1016/j.bpj.2022.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dynamic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preassemble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a coarse-grained excluded volume molecular model in which all protein polymers are represented by nm-sized spheres connected by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simulations of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of "ambiguous" CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates mechanosensation at the molecular level.
Collapse
Affiliation(s)
| | - Ly T S Nguyen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
5
|
Nguyen LTS, Robinson DN. The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery. J Cell Biol 2022; 221:213504. [PMID: 36165849 PMCID: PMC9523886 DOI: 10.1083/jcb.202202063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/11/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Meng F, Shen C, Yang L, Ni C, Huang J, Lin K, Cao Z, Xu S, Cui W, Wang X, Zhou B, Xiong C, Wang J, Zhao B. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal. CELL REGENERATION 2022; 11:39. [DOI: 10.1186/s13619-022-00137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
AbstractIntestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.
Collapse
|
7
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
8
|
Li D, Sun F, Yang Y, Tu H, Cai H. Gradients of PI(4,5)P2 and PI(3,5)P2 Jointly Participate in Shaping the Back State of Dictyostelium Cells. Front Cell Dev Biol 2022; 10:835185. [PMID: 35186938 PMCID: PMC8855053 DOI: 10.3389/fcell.2022.835185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Polarity, which refers to the molecular or structural asymmetry in cells, is essential for diverse cellular functions. Dictyostelium has proven to be a valuable system for dissecting the molecular mechanisms of cell polarity. Previous studies in Dictyostelium have revealed a range of signaling and cytoskeletal proteins that function at the leading edge to promote pseudopod extension and migration. In contrast, how proteins are localized to the trailing edge is not well understood. By screening for asymmetrically localized proteins, we identified a novel trailing-edge protein we named Teep1. We show that a charged surface formed by two pleckstrin homology (PH) domains in Teep1 is necessary and sufficient for targeting it to the rear of cells. Combining biochemical and imaging analyses, we demonstrate that Teep1 interacts preferentially with PI(4,5)P2 and PI(3,5)P2in vitro and simultaneous elimination of these lipid species in cells blocks the membrane association of Teep1. Furthermore, a leading-edge localized myotubularin phosphatase likely mediates the removal of PI(3,5)P2 from the front, as well as the formation of a back-to-front gradient of PI(3,5)P2. Together our data indicate that PI(4,5)P2 and PI(3,5)P2 on the plasma membrane jointly participate in shaping the back state of Dictyostelium cells.
Collapse
Affiliation(s)
- Dong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feifei Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Huaqing Cai,
| |
Collapse
|
9
|
Microtopographical guidance of macropinocytic signaling patches. Proc Natl Acad Sci U S A 2021; 118:2110281118. [PMID: 34876521 PMCID: PMC8685668 DOI: 10.1073/pnas.2110281118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Morphologies of amoebae and immune cells are highly deformable and dynamic, which facilitates migration in various terrains, as well as ingestion of extracellular solutes and particles. It remains largely unexplored whether and how the underlying membrane protrusions are triggered and guided by the geometry of the surface in contact. In this study, we show that in Dictyostelium, the precursor of a structure called macropinocytic cup, which has been thought to be a constitutive process for the uptake of extracellular fluid, is triggered by micrometer-scale surface features. Imaging analysis and computational simulations demonstrate how the topographical dependence of the self-organizing dynamics supports efficient guidance and capturing of the membrane protrusion and hence movement of an entire cell along such surface features. In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.
Collapse
|
10
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
11
|
Nguyen LTS, Robinson DN. The Unusual Suspects in Cytokinesis: Fitting the Pieces Together. Front Cell Dev Biol 2020; 8:441. [PMID: 32626704 PMCID: PMC7314909 DOI: 10.3389/fcell.2020.00441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
Cytokinesis is the step of the cell cycle in which the cell must faithfully separate the chromosomes and cytoplasm, yielding two daughter cells. The assembly and contraction of the contractile network is spatially and temporally coupled with the formation of the mitotic spindle to ensure the successful completion of cytokinesis. While decades of studies have elucidated the components of this machinery, the so-called usual suspects, and their functions, many lines of evidence are pointing to other unexpected proteins and sub-cellular systems as also being involved in cytokinesis. These we term the unusual suspects. In this review, we introduce recent discoveries on some of these new unusual suspects and begin to consider how these subcellular systems snap together to help complete the puzzle of cytokinesis.
Collapse
Affiliation(s)
- Ly T. S. Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States
| |
Collapse
|
12
|
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020; 71:109568. [PMID: 32068086 DOI: 10.1016/j.cellsig.2020.109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a DNA-binding transcription factor that is essential for normal kidney development. Mutations of HNF1B in humans produce cystic kidney diseases, including renal cysts and diabetes, multicystic dysplastic kidneys, glomerulocystic kidney disease, and autosomal dominant tubulointerstitial kidney disease. Expression of HNF1B is reduced in cystic kidneys from humans with ADPKD, and HNF1B has been identified as a modifier gene in PKD. Genome-wide analysis of chromatin binding has revealed that HNF-1β directly regulates the expression of known PKD genes, such as PKHD1 and PKD2, as well as genes involved in PKD pathogenesis, including cAMP-dependent signaling, renal fibrosis, and Wnt signaling. In addition, a role of HNF-1β in regulating the expression of noncoding RNAs (microRNAs and long noncoding RNAs) has been identified. These findings indicate that HNF-1β regulates a transcriptional and post-transcriptional network that plays a central role in renal cystogenesis.
Collapse
Affiliation(s)
- Annie Shao
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Surcel A, Schiffhauer ES, Thomas DG, Zhu Q, DiNapoli KT, Herbig M, Otto O, West-Foyle H, Jacobi A, Kräter M, Plak K, Guck J, Jaffee EM, Iglesias PA, Anders RA, Robinson DN. Targeting Mechanoresponsive Proteins in Pancreatic Cancer: 4-Hydroxyacetophenone Blocks Dissemination and Invasion by Activating MYH14. Cancer Res 2019; 79:4665-4678. [PMID: 31358530 PMCID: PMC6744980 DOI: 10.1158/0008-5472.can-18-3131] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Metastasis is complex, involving multiple genetic, epigenetic, biochemical, and physical changes in the cancer cell and its microenvironment. Cells with metastatic potential are often characterized by altered cellular contractility and deformability, lending them the flexibility to disseminate and navigate through different microenvironments. We demonstrate that mechanoresponsiveness is a hallmark of pancreatic cancer cells. Key mechanoresponsive proteins, those that accumulate in response to mechanical stress, specifically nonmuscle myosin IIA (MYH9) and IIC (MYH14), α-actinin 4, and filamin B, were highly expressed in pancreatic cancer as compared with healthy ductal epithelia. Their less responsive sister paralogs-myosin IIB (MYH10), α-actinin 1, and filamin A-had lower expression differential or disappeared with cancer progression. We demonstrate that proteins whose cellular contributions are often overlooked because of their low abundance can have profound impact on cell architecture, behavior, and mechanics. Here, the low abundant protein MYH14 promoted metastatic behavior and could be exploited with 4-hydroxyacetophenone (4-HAP), which increased MYH14 assembly, stiffening cells. As a result, 4-HAP decreased dissemination, induced cortical actin belts in spheroids, and slowed retrograde actin flow. 4-HAP also reduced liver metastases in human pancreatic cancer-bearing nude mice. Thus, increasing MYH14 assembly overwhelms the ability of cells to polarize and invade, suggesting targeting the mechanoresponsive proteins of the actin cytoskeleton as a new strategy to improve the survival of patients with pancreatic cancer. SIGNIFICANCE: This study demonstrates that mechanoresponsive proteins become upregulated with pancreatic cancer progression and that this system of proteins can be pharmacologically targeted to inhibit the metastatic potential of pancreatic cancer cells.
Collapse
Affiliation(s)
- Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dustin G Thomas
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela Jacobi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Katarzyna Plak
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, The Skip Viragh Pancreatic Cancer Center, and the Bloomberg Kimmel Institute, Johns Hopkins University, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Kothari P, Johnson C, Sandone C, Iglesias PA, Robinson DN. How the mechanobiome drives cell behavior, viewed through the lens of control theory. J Cell Sci 2019; 132:jcs234476. [PMID: 31477578 PMCID: PMC6771144 DOI: 10.1242/jcs.234476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.
Collapse
Affiliation(s)
- Priyanka Kothari
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cecilia Johnson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Corinne Sandone
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Pablo A Iglesias
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Douglas N Robinson
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A 2019; 116:3594-3603. [PMID: 30808751 DOI: 10.1073/pnas.1821638116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA - /E -/H - and racE - mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Collapse
|
16
|
Schiffhauer ES, Ren Y, Iglesias VA, Kothari P, Iglesias PA, Robinson DN. Myosin IIB assembly state determines its mechanosensitive dynamics. J Cell Biol 2019; 218:895-908. [PMID: 30655296 PMCID: PMC6400566 DOI: 10.1083/jcb.201806058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell's ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for Dictyostelium myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Vicente A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Priyanka Kothari
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD .,Department of Pharmacology and Molecular Sciences School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
17
|
Kothari P, Srivastava V, Aggarwal V, Tchernyshyov I, Van Eyk JE, Ha T, Robinson DN. Contractility kits promote assembly of the mechanoresponsive cytoskeletal network. J Cell Sci 2019; 132:jcs.226704. [PMID: 30559246 DOI: 10.1242/jcs.226704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
Cellular contractility is governed by a control system of proteins that integrates internal and external cues to drive diverse shape change processes. This contractility controller includes myosin II motors, actin crosslinkers and protein scaffolds, which exhibit robust and cooperative mechanoaccumulation. However, the biochemical interactions and feedback mechanisms that drive the controller remain unknown. Here, we use a proteomics approach to identify direct interactors of two key nodes of the contractility controller in the social amoeba Dictyostelium discoideum: the actin crosslinker cortexillin I and the scaffolding protein IQGAP2. We highlight several unexpected proteins that suggest feedback from metabolic and RNA-binding proteins on the contractility controller. Quantitative in vivo biochemical measurements reveal direct interactions between myosin II and cortexillin I, which form the core mechanosensor. Furthermore, IQGAP1 negatively regulates mechanoresponsiveness by competing with IQGAP2 for binding the myosin II-cortexillin I complex. These myosin II-cortexillin I-IQGAP2 complexes are pre-assembled into higher-order mechanoresponsive contractility kits (MCKs) that are poised to integrate into the cortex upon diffusional encounter coincident with mechanical inputs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Priyanka Kothari
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasudha Srivastava
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasudha Aggarwal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Tchernyshyov
- Department of Medicine, The Smidt Heart Institute and Advanced Clinical Biosystems Institute, Cedar-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Department of Medicine, The Smidt Heart Institute and Advanced Clinical Biosystems Institute, Cedar-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Abstract
During cytokinesis, the cell employs various molecular machineries to separate into two daughters. Many signaling pathways are required to ensure temporal and spatial coordination of the molecular and mechanical events. Cells can also coordinate division with neighboring cells to maintain tissue integrity and flexibility. In this review, we focus on recent advances in the understanding of the molecular underpinnings of cytokinesis.
Collapse
Affiliation(s)
- Yinan Liu
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Douglas Robinson
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
19
|
Hashimoto H, Munro E. Dynamic interplay of cell fate, polarity and force generation in ascidian embryos. Curr Opin Genet Dev 2018; 51:67-77. [PMID: 30007244 DOI: 10.1016/j.gde.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A fundamental challenge in developmental biology is to understand how forces produced by individual cells are patterned in space and time and then integrated to produce stereotyped changes in tissue-level or embryo-level morphology. Ascidians offer a unique opportunity to address this challenge by studying how small groups of cells collectively execute complex, but highly stereotyped morphogenetic movements. Here we highlight recent progress and open questions in the study of ascidian morphogenesis, emphasizing the dynamic interplay of cell fate determination, cellular force generation and tissue-level mechanics.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
20
|
van Haastert PJM, Keizer-Gunnink I, Kortholt A. The cytoskeleton regulates symmetry transitions in moving amoeboid cells. J Cell Sci 2018; 131:jcs.208892. [DOI: 10.1242/jcs.208892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/19/2018] [Indexed: 01/24/2023] Open
Abstract
Symmetry and symmetry breaking are essential in biology. Symmetry comes in different forms: rotational symmetry, mirror symmetry and alternating right/left symmetry. Especially the transitions between the different symmetry forms specify crucial points in cell biology, including gastrulation in development, formation of the cleavage furrow in cell division, or the front in cell polarity. However, the mechanisms of these symmetry transitions are not well understood. Here we have investigated the fundaments of symmetry and symmetry transitions of the cytoskeleton during cell movement. Our data show that the dynamic shape changes of amoeboid cells are far from random, but are the consequence of refined symmetries and symmetry changes that are orchestrated by small G-proteins and the cytoskeleton, with local stimulation by F-actin and Scar , and local inhibition by IQGAP2 and myosin.
Collapse
Affiliation(s)
- Peter J. M. van Haastert
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Miao C, Schiffhauer ES, Okeke EI, Robinson DN, Luo T. Parallel Compression Is a Fast Low-Cost Assay for the High-Throughput Screening of Mechanosensory Cytoskeletal Proteins in Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28168-28179. [PMID: 28795554 PMCID: PMC5891216 DOI: 10.1021/acsami.7b04622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellular mechanosensing is critical for many biological processes, including cell differentiation, proliferation, migration, and tissue morphogenesis. The actin cytoskeletal proteins play important roles in cellular mechanosensing. Many techniques have been used to investigate the mechanosensory behaviors of these proteins. However, a fast, low-cost assay for the quantitative characterization of these proteins is still lacking. Here, we demonstrate that compression assay using agarose overlay is suitable for the high throughput screening of mechanosensory proteins in live cells while requiring minimal experimental setup. We used several well-studied myosin II mutants to assess the compression assay. On the basis of elasticity theories, we simulated the mechanosensory accumulation of myosin II's and quantitatively reproduced the experimentally observed protein dynamics. Combining the compression assay with confocal microscopy, we monitored the polarization of myosin II oligomers at the subcellular level. The polarization was dependent on the ratio of the two principal strains of the cellular deformations. Finally, we demonstrated that this technique could be used on the investigation of other mechanosensory proteins.
Collapse
Affiliation(s)
- Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
| | - Eric S. Schiffhauer
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Evelyn I. Okeke
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Douglas N. Robinson
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Corresponding Author:
| |
Collapse
|
22
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Schiffhauer ES, Robinson DN. Mechanochemical Signaling Directs Cell-Shape Change. Biophys J 2017; 112:207-214. [PMID: 28122209 DOI: 10.1016/j.bpj.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
For specialized cell function, as well as active cell behaviors such as division, migration, and tissue development, cells must undergo dynamic changes in shape. To complete these processes, cells integrate chemical and mechanical signals to direct force production. This mechanochemical integration allows for the rapid production and adaptation of leading-edge machinery in migrating cells, the invasion of one cell into another during cell-cell fusion, and the force-feedback loops that ensure robust cytokinesis. A quantitative understanding of cell mechanics coupled with protein dynamics has allowed us to account for furrow ingression during cytokinesis, a model cell-shape-change process. At the core of cell-shape changes is the ability of the cell's machinery to sense mechanical forces and tune the force-generating machinery as needed. Force-sensitive cytoskeletal proteins, including myosin II motors and actin cross-linkers such as α-actinin and filamin, accumulate in response to internally generated and externally imposed mechanical stresses, endowing the cell with the ability to discern and respond to mechanical cues. The physical theory behind how these proteins display mechanosensitive accumulation has allowed us to predict paralog-specific behaviors of different cross-linking proteins and identify a zone of optimal actin-binding affinity that allows for mechanical stress-induced protein accumulation. These molecular mechanisms coupled with the mechanical feedback systems ensure robust shape changes, but if they go awry, they are poised to promote disease states such as cancer cell metastasis and loss of tissue integrity.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland; Department of Pharmacology and Molecular Science, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
24
|
Jahan MGS, Yumura S. Traction force and its regulation during cytokinesis in Dictyostelium cells. Eur J Cell Biol 2017. [PMID: 28633918 DOI: 10.1016/j.ejcb.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis is the final stage of cell division. Dictyostelium cells have multiple modes of cytokinesis, including cytokinesis A, B and C. Cytokinesis A is a conventional mode, which depends on myosin II in the contractile ring. Myosin II null cells divide depending on substratum-attachment (cytokinesis B) or in a multi-polar fashion independent of the cell cycle (cytokinesis C). We investigated the traction stress exerted by dividing cells in the three different modes using traction force microscopy. In all cases, the traction forces were directed inward from both poles. Interestingly, the traction stress of cytokinesis A was the smallest of the three modes. Latrunculin B, an inhibitor of actin polymerization, completely diminished the traction stress of dividing cells, but blebbistatin, an inhibitor of myosin II ATPase, increased the traction stress. Myosin II is proposed to contribute to the detachment of cell body from the substratum. When the cell-substratum attachment was artificially strengthened by a poly-lysine coating, wild type cells increased their traction stress in contrast to myosin II null and other cytokinesis-deficient mutant cells, which suggests that wild type cells may increase their own power to conduct their cytokinesis. The cytokinesis-deficient mutants frequently divided unequally, whereas wild type cells divided equally. A traction stress imbalance between two daughter halves was correlated with cytokinesis failure. We discuss the regulation of cell shape changes during cell division through mechanosensing.
Collapse
Affiliation(s)
- Md Golam Sarowar Jahan
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
25
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Cheffings T, Burroughs N, Balasubramanian M. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis. Curr Biol 2016; 26:R719-R737. [DOI: 10.1016/j.cub.2016.06.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Abstract
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
28
|
Greenberg MJ, Arpağ G, Tüzel E, Ostap EM. A Perspective on the Role of Myosins as Mechanosensors. Biophys J 2016; 110:2568-2576. [PMID: 27332116 PMCID: PMC4919425 DOI: 10.1016/j.bpj.2016.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022] Open
Abstract
Cells are dynamic systems that generate and respond to forces over a range of spatial and temporal scales, spanning from single molecules to tissues. Substantial progress has been made in recent years in identifying the molecules and pathways responsible for sensing and transducing mechanical signals to short-term cellular responses and longer-term changes in gene expression, cell identity, and tissue development. In this perspective article, we focus on myosin motors, as they not only function as the primary force generators in well-studied mechanobiological processes, but also act as key mechanosensors in diverse functions including intracellular transport, signaling, cell migration, muscle contraction, and sensory perception. We discuss how the biochemical and mechanical properties of different myosin isoforms are tuned to fulfill these roles in an array of cellular processes, and we highlight the underappreciated diversity of mechanosensing properties within the myosin superfamily. In particular, we use modeling and simulations to make predictions regarding how diversity in force sensing affects the lifetime of the actomyosin bond, the myosin power output, and the ability of myosin to respond to a perturbation in force for several nonprocessive myosin isoforms.
Collapse
Affiliation(s)
- Michael J Greenberg
- Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri
| | - Göker Arpağ
- Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Erkan Tüzel
- Worcester Polytechnic Institute, Worcester, Massachusetts
| | - E Michael Ostap
- Pennsylvania Muscle Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Mechanoaccumulative Elements of the Mammalian Actin Cytoskeleton. Curr Biol 2016; 26:1473-1479. [PMID: 27185555 DOI: 10.1016/j.cub.2016.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/16/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022]
Abstract
To change shape, divide, form junctions, and migrate, cells reorganize their cytoskeletons in response to changing mechanical environments [1-4]. Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, structurally remodel and activate signaling pathways in response to imposed stresses [5-9]. Recent studies demonstrate the importance of force-dependent structural rearrangement of α-catenin in adherens junctions [10] and vinculin's molecular clutch mechanism in focal adhesions [11]. However, the complete landscape of cytoskeletal mechanoresponsive proteins and the mechanisms by which these elements sense and respond to force remain to be elucidated. To find mechanosensitive elements in mammalian cells, we examined protein relocalization in response to controlled external stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, and filamin accumulate to mechanically stressed regions in cells from diverse lineages. Using reaction-diffusion models for force-sensitive binding, we successfully predicted which mammalian α-actinin and filamin paralogs would be mechanoaccumulative. Furthermore, a "Goldilocks zone" must exist for each protein where the actin-binding affinity must be optimal for accumulation. In addition, we leveraged genetic mutants to gain a molecular understanding of the mechanisms of α-actinin and filamin catch-bonding behavior. Two distinct modes of mechanoaccumulation can be observed: a fast, diffusion-based accumulation and a slower, myosin II-dependent cortical flow phase that acts on proteins with specific binding lifetimes. Finally, we uncovered cell-type- and cell-cycle-stage-specific control of the mechanosensation of myosin IIB, but not myosin IIA or IIC. Overall, these mechanoaccumulative mechanisms drive the cell's response to physical perturbation during proper tissue development and disease.
Collapse
|
30
|
Abstract
Cytokinesis, a model cell shape change event, is controlled by an integrated system that coordinates the mitotic spindle signals with a mechanoresponsive cytoskeletal network that drives contractility and furrow ingression. Quantitative methods that measure cell mechanics, mechanoresponse (mechanical stress-induced protein accumulation), protein dynamics, and molecular interactions are necessary to provide insight into both the mechanical and biochemical components involved in cytokinesis and cell shape regulation. Micropipette aspiration, fluorescence correlation and cross-correlation spectroscopy, and fluorescence recovery after photobleaching are valuable methods for measuring cell mechanics and protein dynamics in vivo that occur on nanometer to micron length-scales, and microsecond to minute timescales. Collectively, these methods provide the ability to quantify the molecular interactions that control the cell's ability to change shape and undergo cytokinesis.
Collapse
|
31
|
Mohan K, Luo T, Robinson DN, Iglesias PA. Cell shape regulation through mechanosensory feedback control. J R Soc Interface 2016. [PMID: 26224568 DOI: 10.1098/rsif.2015.0512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells undergo controlled changes in morphology in response to intracellular and extracellular signals. These changes require a means for sensing and interpreting the signalling cues, for generating the forces that act on the cell's physical material, and a control system to regulate this process. Experiments on Dictyostelium amoebae have shown that force-generating proteins can localize in response to external mechanical perturbations. This mechanosensing, and the ensuing mechanical feedback, plays an important role in minimizing the effect of mechanical disturbances in the course of changes in cell shape, especially during cell division, and likely in other contexts, such as during three-dimensional migration. Owing to the complexity of the feedback system, which couples mechanical and biochemical signals involved in shape regulation, theoretical approaches can guide further investigation by providing insights that are difficult to decipher experimentally. Here, we present a computational model that explains the different mechanosensory and mechanoresponsive behaviours observed in Dictyostelium cells. The model features a multiscale description of myosin II bipolar thick filament assembly that includes cooperative and force-dependent myosin-actin binding, and identifies the feedback mechanisms hidden in the observed mechanoresponsive behaviours of Dictyostelium cells during micropipette aspiration experiments. These feedbacks provide a mechanistic explanation of cellular retraction and hence cell shape regulation.
Collapse
Affiliation(s)
- Krithika Mohan
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tianzhi Luo
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Srivastava V, Iglesias PA, Robinson DN. Cytokinesis: Robust cell shape regulation. Semin Cell Dev Biol 2015; 53:39-44. [PMID: 26481973 DOI: 10.1016/j.semcdb.2015.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
Cytokinesis, the final step of cell division, is a great example of robust cell shape regulation. A wide variety of cells ranging from the unicellular Dictyostelium to human cells in tissues proceed through highly similar, stereotypical cell shape changes during cell division. Typically, cells first round up forming a cleavage furrow in the middle, which constricts resulting in the formation of two daughter cells. Tight control of cytokinesis is essential for proper segregation of genetic and cellular materials, and its failure is deleterious to cell viability. Thus, biological systems have developed elaborate mechanisms to ensure high fidelity of cytokinesis, including the existence of multiple biochemical and mechanical pathways regulated through feedback. In this review, we focus on the built-in redundancy of the cytoskeletal machinery that allows cells to divide successfully in a variety of biological and mechanical contexts. Using Dictyostelium cytokinesis as an example, we demonstrate that the crosstalk between biochemical and mechanical signaling through feedback ensures correct assembly and function of the cell division machinery.
Collapse
Affiliation(s)
- Vasudha Srivastava
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
34
|
Ramalingam N, Franke C, Jaschinski E, Winterhoff M, Lu Y, Brühmann S, Junemann A, Meier H, Noegel AA, Weber I, Zhao H, Merkel R, Schleicher M, Faix J. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat Commun 2015; 6:8496. [PMID: 26415699 PMCID: PMC4598863 DOI: 10.1038/ncomms9496] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Anatomy III/Cell Biology, BioMedCenter, Ludwig-Maximilians-University, Grosshaderner Str. 9, Planegg-Martinsried, Germany
| | - Christof Franke
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Evelin Jaschinski
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich 52425 Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Yao Lu
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Helena Meier
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln 50931, Germany
| | - Igor Weber
- Division of Molecular Biology, Ruder Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich 52425 Germany
| | - Michael Schleicher
- Anatomy III/Cell Biology, BioMedCenter, Ludwig-Maximilians-University, Grosshaderner Str. 9, Planegg-Martinsried, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| |
Collapse
|
35
|
Modeling large-scale dynamic processes in the cell: polarization, waves, and division. Q Rev Biophys 2015; 47:221-48. [PMID: 25124728 DOI: 10.1017/s0033583514000079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.
Collapse
|
36
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Mechanical stress and network structure drive protein dynamics during cytokinesis. Curr Biol 2015; 25:663-70. [PMID: 25702575 DOI: 10.1016/j.cub.2015.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/12/2014] [Accepted: 01/09/2015] [Indexed: 11/21/2022]
Abstract
Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity.
Collapse
|
38
|
Pharmacological activation of myosin II paralogs to correct cell mechanics defects. Proc Natl Acad Sci U S A 2015; 112:1428-33. [PMID: 25605895 DOI: 10.1073/pnas.1412592112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior.
Collapse
|
39
|
Ren Y, West-Foyle H, Surcel A, Miller C, Robinson DN. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation. Mol Biol Cell 2014; 25:4150-65. [PMID: 25318674 PMCID: PMC4263456 DOI: 10.1091/mbc.e14-08-1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system.
Collapse
Affiliation(s)
- Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christopher Miller
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Summer Academic Research Experience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
40
|
Bastounis E, Meili R, Álvarez-González B, Francois J, del Álamo JC, Firtel RA, Lasheras JC. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. ACTA ACUST UNITED AC 2014; 204:1045-61. [PMID: 24637328 PMCID: PMC3998796 DOI: 10.1083/jcb.201307106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.
Collapse
Affiliation(s)
- Effie Bastounis
- Department of Mechanical and Aerospace Engineering and 2 Department of Bioengineering, Jacobs School of Engineering; 3 Section of Cell and Developmental Biology, Division of Biological Sciences; and 4 Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
41
|
Schiefermeier N, Scheffler JM, de Araujo MEG, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickström SA, Lange A, Wunderlich W, Fässler R, Teis D, Huber LA. The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. ACTA ACUST UNITED AC 2014; 205:525-40. [PMID: 24841562 PMCID: PMC4033770 DOI: 10.1083/jcb.201310043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Late endosomes locally regulate cell migration by transporting the p14–MP1 scaffold complex to the vicinity of focal adhesions. Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.
Collapse
Affiliation(s)
- Natalia Schiefermeier
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Julia M Scheffler
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Taras Stasyk
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Teodor Yordanov
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Hannes L Ebner
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sebastian Munck
- VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Michael W Hess
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sara A Wickström
- Paul Gerson Unna group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anika Lange
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Winfried Wunderlich
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria Oncotyrol, 6020 Innsbruck, Austria
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David Teis
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Liu X, Shu S, Yu S, Lee DY, Piszczek G, Gucek M, Wang G, Korn ED. Biochemical and biological properties of cortexillin III, a component of Dictyostelium DGAP1-cortexillin complexes. Mol Biol Cell 2014; 25:2026-38. [PMID: 24807902 PMCID: PMC4072576 DOI: 10.1091/mbc.e13-08-0457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cortexillin III, a member of the α-actinin/spectrin subfamily of Dictyostelium calponin homology proteins, forms heterodimers with cortexillins I and II that bind to the GAP protein DGAP1 in vivo. Cortexillin III complexes may be negative regulators of cell growth, pinocytosis, and phagocytosis, as all are enhanced in cortexillin III–null cells. Cortexillins I–III are members of the α-actinin/spectrin subfamily of Dictyostelium calponin homology proteins. Unlike recombinant cortexillins I and II, which form homodimers as well as heterodimers in vitro, we find that recombinant cortexillin III is an unstable monomer but forms more stable heterodimers when coexpressed in Escherichia coli with cortexillin I or II. Expressed cortexillin III also forms heterodimers with both cortexillin I and II in vivo, and the heterodimers complex in vivo with DGAP1, a Dictyostelium GAP protein. Binding of cortexillin III to DGAP1 requires the presence of either cortexillin I or II; that is, cortexillin III binds to DGAP1 only as a heterodimer, and the heterodimers form in vivo in the absence of DGAP1. Expressed cortexillin III colocalizes with cortexillins I and II in the cortex of vegetative amoebae, the leading edge of motile cells, and the cleavage furrow of dividing cells. Colocalization of cortexillin III and F-actin may require the heterodimer/DGAP1 complex. Functionally, cortexillin III may be a negative regulator of cell growth, cytokinesis, pinocytosis, and phagocytosis, as all are enhanced in cortexillin III–null cells.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shuhua Yu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guanghui Wang
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Mendes Pinto I, Rubinstein B, Li R. Force to divide: structural and mechanical requirements for actomyosin ring contraction. Biophys J 2014; 105:547-54. [PMID: 23931302 DOI: 10.1016/j.bpj.2013.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
Abstract
One of the unresolved questions in the field of cell division is how the actomyosin cytoskeleton remains structurally organized while generating the contractile force to divide one cell into two. In analogy to the actomyosin-based force production mechanism in striated muscle, it was originally proposed that contractile stress in the actomyosin ring is generated via a sliding filament mechanism within an organized sarcomere-like array. However, over the last 30 years, ultrastructural and functional studies have noted important distinctions between cytokinetic structures in dividing cells and muscle sarcomeres. Myosin-II motor activity is not always required, and there is evidence that actin depolymerization contributes to contraction. In this Review, the architecture and contractile dynamics of the actomyosin ring at the cell division plane will be discussed. We will report the interdisciplinary advances in the field as well as their integration into a mechanistic understanding of contraction in cell division and in other biological processes that rely on an actomyosin-based force-generating system.
Collapse
|
44
|
O'Day DH, Budniak A. Nucleocytoplasmic protein translocation during mitosis in the social amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2014; 90:126-41. [PMID: 24618050 DOI: 10.1111/brv.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/03/2023]
Abstract
Mitosis is a fundamental and essential life process. It underlies the duplication and survival of all cells and, as a result, all eukaryotic organisms. Since uncontrolled mitosis is a dreaded component of many cancers, a full understanding of the process is critical. Evolution has led to the existence of three types of mitosis: closed, open, and semi-open. The significance of these different mitotic species, how they can lead to a full understanding of the critical events that underlie the asexual duplication of all cells, and how they may generate new insights into controlling unregulated cell division remains to be determined. The eukaryotic microbe Dictyostelium discoideum has proved to be a valuable biomedical model organism. While it appears to utilize closed mitosis, a review of the literature suggests that it possesses a form of mitosis that lies in the middle between truly open and fully closed mitosis-it utilizes a form of semi-open mitosis. Here, the nucleocytoplasmic translocation patterns of the proteins that have been studied during mitosis in the social amoebozoan D. discoideum are detailed followed by a discussion of how some of them provide support for the hypothesis of semi-open mitosis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
45
|
Luo T, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular mechanosensing. NATURE MATERIALS 2013; 12:1064-71. [PMID: 24141449 PMCID: PMC3838893 DOI: 10.1038/nmat3772] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/04/2013] [Indexed: 05/03/2023]
Abstract
Mechanical forces direct a host of cellular and tissue processes. Although much emphasis has been placed on cell-adhesion complexes as force sensors, the forces must nevertheless be transmitted through the cortical cytoskeleton. Yet how the actin cortex senses and transmits forces and how cytoskeletal proteins interact in response to the forces is poorly understood. Here, by combining molecular and mechanical experimental perturbations with theoretical multiscale modelling, we decipher cortical mechanosensing from molecular to cellular scales. We show that forces are shared between myosin II and different actin crosslinkers, with myosin having potentiating or inhibitory effects on certain crosslinkers. Different types of cell deformation elicit distinct responses, with myosin and α-actinin responding to dilation, and filamin mainly reacting to shear. Our observations show that the accumulation kinetics of each protein may be explained by its molecular mechanisms, and that protein accumulation and the cell's viscoelastic state can explain cell contraction against mechanical load.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Correspondence to or
| | - Krithika Mohan
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Douglas N. Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Correspondence to or
| |
Collapse
|
46
|
Bement WM, von Dassow G. Single cell pattern formation and transient cytoskeletal arrays. Curr Opin Cell Biol 2013; 26:51-9. [PMID: 24529246 DOI: 10.1016/j.ceb.2013.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/28/2022]
Abstract
A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized.
Collapse
Affiliation(s)
- William M Bement
- Laboratory of Cell and Molecular Biology and Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA; Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420, USA.
| | - George von Dassow
- Laboratory of Cell and Molecular Biology and Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA.
| |
Collapse
|
47
|
Weis WI, Nelson WJ, Dickinson DJ. Evolution and cell physiology. 3. Using Dictyostelium discoideum to investigate mechanisms of epithelial polarity. Am J Physiol Cell Physiol 2013; 305:C1091-5. [PMID: 24067914 DOI: 10.1152/ajpcell.00233.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In Metazoa, a polarized epithelium forms a single-cell-layered barrier that separates the outside from the inside of the organism. In tubular epithelia, the apical side of the cell is constricted relative to the basal side, forming a wedge-shaped cell that can pack into a tube. Apical constriction is mediated by actomyosin activity. In higher animals, apical actomyosin is connected between cells by specialized cell-cell junctions that contain a classical cadherin, the Wnt signaling protein β-catenin, and the actin-binding protein α-catenin. The molecular mechanisms that lead to selective accumulation of myosin at the apical surface of cells are poorly understood. We found that the nonmetazoan Dictyostelium discoideum forms a polarized epithelium that surrounds the stalk tube at the tip of the multicellular fruiting body. Although D. discoideum lacks a cadherin homolog, it expresses homologs of β- and α-catenin. Both catenins are essential for formation of the tip epithelium, polarized protein secretion, and proper multicellular morphogenesis. Myosin localizes apically in tip epithelial cells, and it appears that constriction of this epithelial tube is required for proper morphogenesis. Localization of myosin II is controlled by the protein IQGAP1 and its binding partners cortexillins I and II, which function downstream of α- and β-catenin to exclude myosin from the basolateral cortex and promote apical accumulation of myosin. These studies show that the function of catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins, and that apical localization of myosin is a morphogenetic mechanism conserved from nonmetazoans to vertebrates.
Collapse
Affiliation(s)
- William I Weis
- Program in Cancer Biology, Stanford University, Stanford, California
| | | | | |
Collapse
|
48
|
Kee YS, Robinson DN. Micropipette aspiration for studying cellular mechanosensory responses and mechanics. Methods Mol Biol 2013; 983:367-82. [PMID: 23494318 DOI: 10.1007/978-1-62703-302-2_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this chapter, we present how to set up a micropipette aspiration system and the experimental procedures for determining cortical tension and mechanosensory responses.
Collapse
Affiliation(s)
- Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
49
|
Abstract
Nearly every cell type exhibits some form of polarity, yet the molecular mechanisms vary widely. Here we examine what we term 'chemical systems' where cell polarization arises through biochemical interactions in signaling pathways, 'mechanical systems' where cells polarize due to forces, stresses and transport, and 'mechanochemical systems' where polarization results from interplay between mechanics and chemical signaling. To reveal potentially unifying principles, we discuss mathematical conceptualizations of several prototypical examples. We suggest that the concept of local activation and global inhibition - originally developed to explain spatial patterning in reaction-diffusion systems - provides a framework for understanding many cases of cell polarity. Importantly, we find that the core ingredients in this framework - symmetry breaking, self-amplifying feedback, and long-range inhibition - involve processes that can be chemical, mechanical, or even mechanochemical in nature.
Collapse
|
50
|
Giansanti MG, Fuller MT. What Drosophila spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton (Hoboken) 2012; 69:869-81. [PMID: 22927345 DOI: 10.1002/cm.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022]
Abstract
Cytokinesis separates the genomic material and organelles of a dividing cell equitably into two physically distinct daughter cells at the end of cell division. This highly choreographed process involves coordinated reorganization and regulated action of the actin and microtubule cytoskeletal systems, an assortment of motor proteins, and membrane trafficking components. Due to their large size, the ease with which exquisite cytological analysis may be performed on them, and the availability of numerous mutants and other genetic tools, Drosophila spermatocytes have provided an excellent system for exploring the mechanistic basis for the temporally programmed and precise spatially localized events of cytokinesis. Mutants defective in male meiotic cytokinesis can be easily identified in forward genetic screens by the production of multinucleate spermatids. In addition, the weak spindle assembly checkpoint in spermatocytes, which causes only a small delay of anaphase onset in the presence of unattached chromosomes, allows investigation of whether gene products required for spindle assembly and chromosome segregation are also involved in cytokinesis. Perhaps due to the large size of spermatocytes and the requirement for two rapid-fire rounds of division without intervening S or growth phases during meiosis, male meiotic mutants have also revealed much about molecular mechanisms underlying new membrane addition during cytokinesis. Finally, cell type-specific differences in the events that set up and complete cytokinesis are emerging from comparison of spermatocytes with cells undergoing mitosis either elsewhere in the organism or in tissue culture.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma, Piazzale A. Moro 5, Roma, Italy.
| | | |
Collapse
|