1
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
3
|
The In Vitro Cytotoxic Effects of Ionophore Exposure on Selected Cytoskeletal Proteins of C2C12 Myoblasts. Toxins (Basel) 2022; 14:toxins14070447. [PMID: 35878184 PMCID: PMC9317143 DOI: 10.3390/toxins14070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Carboxylic ionophores, such as monensin, salinomycin and lasalocid, are polyether antibiotics used widely in production animals for the control of coccidiosis, as well as for the promotion of growth and feed efficiency. Although the benefits of using ionophores are undisputed, cases of ionophore toxicosis do occur, primarily targeting the cardiac and skeletal muscles of affected animals. The 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) viability assay was used to determine the cytotoxicity of monensin, salinomycin and lasalocid on mouse skeletal myoblasts (C2C12). Immunocytochemistry and immunofluorescent techniques were, in turn, performed to investigate the effects of the ionophores on the microfilament, microtubule and intermediate filament, i.e., desmin and synemin networks of the myoblasts. Monensin was the most cytotoxic of the three ionophores, followed by salinomycin and finally lasalocid. Monensin and salinomycin exposure resulted in the aggregation of desmin around the nuclei of affected myoblasts. The synemin, microtubule and microfilament networks were less affected; however, vesicles throughout the myoblast’s cytoplasm produced gaps within the microtubule and, to a limited extent, the synemin and microfilament networks. In conclusion, ionophore exposure disrupted desmin filaments, which could contribute to the myofibrillar degeneration and necrosis seen in the skeletal muscles of animals suffering from ionophore toxicosis.
Collapse
|
4
|
Zhou J. Synemin promotes pulmonary artery smooth muscle cell phenotypic switch in shunt-induced pulmonary arterial hypertension. ESC Heart Fail 2022; 9:3221-3231. [PMID: 35769011 DOI: 10.1002/ehf2.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Although considerable progress has been made in the diagnosis and treatment of congenital heart disease-associated pulmonary heart hypertension (CHD-PAH), the clinical prognosis and overall survival of patients with CHD-PAH remain poor. Therefore, the molecular pathogenesis of CHD-PAH requires further investigation. The intermediate filament protein synemin (SYN) is reported to modulate phenotypic alterations and varicose vein development, but there is little understanding of its exact functions in CHD-PAH. METHODS AND RESULTS SYN expression in the pulmonary arterioles of CHD-PAH patients and shunt-induced PAH rat models was evaluated using immunohistochemistry and western blot. Cell counts and Transwell migration assays were used to assess the effect of SYN on the proliferation and migration capability of human pulmonary smooth muscle cells (hPASMCs). Adeno-associated viruses (AAVs) have been used to suppress SYN expression in the pulmonary arterioles of rats. Such rats were further used to construct a shunt-induced PAH animal model to investigate the function of SYN in PAH and pulmonary vascular remodelling. Compared with the normal control group, SYN expression was found to be clearly up-regulated in the remodelled pulmonary arterioles of CHD-PAH and shunt-induced PAH rat models. In addition, SYN suppression increased the expression of hPASMC contractile-phenotype markers and decreased the expression of synthetic phenotype markers, in contrast to the control group. SYN suppression also dramatically attenuated the proliferation and migration capability of hPASMCs. Conversely, SYN overexpression promoted phenotypic switch, proliferation, and migration of hPASMCs, whereas these effects were notably alleviated by the protein kinase B (AKT) inhibitor MK-2206. Furthermore, we confirmed that SYN suppression mitigated PAH and pulmonary vascular remodelling induced by high blood flow in vivo. CONCLUSIONS Our findings indicated that SYN may represent a promising therapeutic target in the treatment of CHD-PAH.
Collapse
Affiliation(s)
- Jingjing Zhou
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Nin DS, Wujanto C, Tan TZ, Lim D, Damen JMA, Wu KY, Dai ZM, Lee ZW, Idres SB, Leong YH, Jha S, Ng JSY, Low JJH, Chang SC, Tan DSP, Wu W, Choo BA, Deng LW. GAGE mediates radio resistance in cervical cancers via the regulation of chromatin accessibility. Cell Rep 2021; 36:109621. [PMID: 34469741 DOI: 10.1016/j.celrep.2021.109621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) resistance is a major cause of treatment failure in cancers that use definitive RT as their primary treatment modality. This study identifies the cancer/testis (CT) antigen G antigen (GAGE) as a mediator of radio resistance in cervical cancers. Elevated GAGE expression positively associates with de novo RT resistance in clinical samples. GAGE, specifically the GAGE12 protein variant, confers RT resistance through synemin-dependent chromatin localization, promoting the association of histone deacetylase 1/2 (HDAC1/2) to its inhibitor actin. This cumulates to elevated histone 3 lysine 56 acetylation (H3K56Ac) levels, increased chromatin accessibility, and improved DNA repair efficiency. Molecular or pharmacological disruption of the GAGE-associated complex restores radiosensitivity. Molecularly, this study demonstrates the role of GAGE in the regulation of chromatin dynamics. Clinically, this study puts forward the utility of GAGE as a pre-screening biomarker to identify poor responders at initial diagnosis and the therapeutic potential of agents that target GAGE and its associated complex in combination with radiotherapy to improve outcomes.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore; NUS Center for Cancer Research, YLLSOM, NUS, Singapore 117599, Singapore.
| | - Caryn Wujanto
- Department of Radiation Oncology, National University Hospital (NUH), Singapore 119074, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, NUS, Singapore 117599, Singapore
| | - Diana Lim
- Department of Pathology, NUH, Singapore 119074, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht , the Netherlands
| | - Kuan-Yi Wu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ziyu Melvin Dai
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore
| | - Zheng-Wei Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore
| | - Shabana Binte Idres
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore
| | - Yiat Horng Leong
- Department of Radiation Oncology, National University Hospital (NUH), Singapore 119074, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore
| | - Sudhakar Jha
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore; Cancer Science Institute of Singapore, NUS, Singapore 117599, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore; Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA; NUS Center for Cancer Research, YLLSOM, NUS, Singapore 117599, Singapore
| | - Joseph Soon-Yau Ng
- National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore; Department of Obstetrics and Gynecology, YLLSOM, NUS, Singapore 119228, Singapore
| | - Jeffrey J H Low
- National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore; Department of Obstetrics and Gynecology, YLLSOM, NUS, Singapore 119228, Singapore
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, NUS, Singapore 117599, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore; Department of Hematology-Oncology, NUHS, Singapore 119228, Singapore; NUS Center for Cancer Research, YLLSOM, NUS, Singapore 117599, Singapore
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht , the Netherlands
| | - Bok Ai Choo
- Department of Radiation Oncology, National University Hospital (NUH), Singapore 119074, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore (NUS), Singapore 117596, Singapore; National University Cancer Institute, Singapore National University Health System (NUHS), Singapore 119074, Singapore; NUS Center for Cancer Research, YLLSOM, NUS, Singapore 117599, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme, NUS, Singapore 119077, Singapore.
| |
Collapse
|
6
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Hu ZG, Dong ZQ, Dong FF, Zhu Y, Chen P, Lu C, Pan MH. Identification of a PP2A gene in Bombyx mori with antiviral function against B. mori nucleopolyhedrovirus. INSECT SCIENCE 2020; 27:687-696. [PMID: 31070299 DOI: 10.1111/1744-7917.12678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/11/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Ser/Thr protein phosphatase 2A (PP2A) is one of the type 2 protein phosphatases, which is required for many intracellular physiological processes and pathogen infection. However, the function of PP2A is unclear in silkworm, Bombyx mori. Here, we cloned and identified BmPP2A, a PP2A gene from B. mori, which has two HEAT domains and a high similarity to PP2A from other organisms. Our results showed that BmPP2A is localized in the cytoplasm and highly expressed in silkworm epidermis and midgut, and that Bombyx mori nucleopolyhedrovirus (BmNPV) infection induces down-regulation of BmPP2A expression. Furthermore, up-regulation of BmPP2A via overexpression significantly inhibited BmNPV multiplication. In contrast, down-regulation of BmPP2A via RNA interference and okadaic acid (a PP2A inhibitor) treatment allowed robust BmNPV replication. This is the first report of PP2A having an antiviral effect in silkworm and provides insights into the function of BmPP2A, a potential anti-BmNPV mechanism, and a possible target for the breeding of silkworm-resistant strains.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fei-Fan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Deville SS, Vehlow A, Förster S, Dickreuter E, Borgmann K, Cordes N. The Intermediate Filament Synemin Regulates Non-Homologous End Joining in an ATM-Dependent Manner. Cancers (Basel) 2020; 12:cancers12071717. [PMID: 32605308 PMCID: PMC7407367 DOI: 10.3390/cancers12071717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
The treatment resistance of cancer cells is a multifaceted process in which DNA repair emerged as a potential therapeutic target. DNA repair is predominantly conducted by nuclear events; yet, how extra-nuclear cues impact the DNA damage response is largely unknown. Here, using a high-throughput RNAi-based screen in three-dimensionally-grown cell cultures of head and neck squamous cell carcinoma (HNSCC), we identified novel focal adhesion proteins controlling DNA repair, including the intermediate filament protein, synemin. We demonstrate that synemin critically regulates the DNA damage response by non-homologous end joining repair. Mechanistically, synemin forms a protein complex with DNA-PKcs through its C-terminal tail domain for determining DNA repair processes upstream of this enzyme in an ATM-dependent manner. Our study discovers a critical function of the intermediate filament protein, synemin in the DNA damage response, fundamentally supporting the concept of cytoarchitectural elements as co-regulators of nuclear events.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sarah Förster
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Ellen Dickreuter
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-(0)351-458-7401; Fax: +49-(0)351-458-7311
| |
Collapse
|
9
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
10
|
Paulin D, Hovhannisyan Y, Kasakyan S, Agbulut O, Li Z, Xue Z. Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants. Am J Physiol Cell Physiol 2020; 318:C709-C718. [PMID: 32023076 DOI: 10.1152/ajpcell.00485.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review analyzes data concerning patients with cardiomyopathies or skeletal myopathies associated with a variation in the intermediate filament (IF) synemin gene (SYNM), also referred to as desmuslin (DMN). Molecular studies demonstrate that synemin copolymerizes with desmin and vimentin IF and interacts with vinculin, α-actinin, α-dystrobrevin, dystrophin, talin, and zyxin. It has been found that synemin is an A-kinase-anchoring protein (AKAP) that anchors protein kinase A (PKA) and modulates the PKA-dependent phosphorylation of several cytoskeletal substrates such as desmin. Because several IF proteins, including desmin, have been implicated in human genetic disorders such as dominant or recessive congenital and adult-onset myopathy, synemin becomes a significant candidate for cardiac and skeletal myopathies of unknown etiology. Because SYNM is a new candidate gene that displays numerous sequence polymorphisms, in this review, we summarize the genetic and clinical literature about SYNM mutations. Protein-changing variants (missense, frameshifts, nonsense) were further evaluated based on structural modifications and amino acid interactions. We present in silico modeling of helical salt-bridges between residues to evaluate the impact of the synemin networks crucial to interactions with cytoskeletal proteins. Finally, a discussion is featured regarding certain variants that may contribute to the disease state.
Collapse
Affiliation(s)
- Denise Paulin
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Serdar Kasakyan
- Duzen Laboratories Group, Center of Genetic Diagnosis, Istanbul, Turkey
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhigang Xue
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
11
|
van Bodegraven EJ, van Asperen JV, Sluijs JA, van Deursen CBJ, van Strien ME, Stassen OMJA, Robe PAJ, Hol EM. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner. FASEB J 2019; 33:12941-12959. [PMID: 31480854 DOI: 10.1096/fj.201900916r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary brain tumors. Their highly invasive character and the heterogeneity of active oncogenic pathways within single tumors complicate the development of curative therapies and cause poor patient prognosis. Glioma cells express the intermediate filament protein glial fibrillary acidic protein (GFAP), and the level of its alternative splice variant GFAP-δ, relative to its canonical splice variant GFAP-α, is higher in grade IV compared with lower-grade and lower malignant glioma. In this study we show that a high GFAP-δ/α ratio induces the expression of the dual-specificity phosphatase 4 (DUSP4) in focal adhesions. By focusing on pathways up- and downstream of DUSP4 that are involved in the cell-extracellular matrix interaction, we show that a high GFAP-δ/α ratio equips glioma cells to better invade the brain. This study supports the hypothesis that glioma cells with a high GFAP-δ/α ratio are highly invasive and more malignant cells, thus making GFAP alternative splicing a potential therapeutic target.-Van Bodegraven, E. J., van Asperen, J. V., Sluijs, J. A., van Deursen, C. B. J., van Strien, M. E., Stassen, O. M. J. A., Robe, P. A. J., Hol, E. M. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen B J van Deursen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar M J A Stassen
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
13
|
Subthalamic nucleus deep brain stimulation protects neurons by activating autophagy via PP2A inactivation in a rat model of Parkinson's disease. Exp Neurol 2018; 306:232-242. [DOI: 10.1016/j.expneurol.2018.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
|
14
|
Zlotina A, Kiselev A, Sergushichev A, Parmon E, Kostareva A. Rare Case of Ulnar-Mammary-Like Syndrome With Left Ventricular Tachycardia and Lack of TBX3 Mutation. Front Genet 2018; 9:209. [PMID: 29963074 PMCID: PMC6013977 DOI: 10.3389/fgene.2018.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
"Heart-hand" type syndromes represent a group of rare congenital conditions that combine cardiac pathology (structural defect or arrhythmic disorder) and limb abnormality. Significant clinical variability and genetic heterogeneity typical for such syndromes complicate correct diagnosis, prognosis, and appropriate genetic counseling of the affected families. By now, only single genes have been unambiguously determined as a genetic cause of heart-hand syndromes and phenotypically similar conditions. In the present study, we report on a 25-year-old Russian female patient with a clinical picture resembling ulnar-mammary syndrome (UMS). Principal clinical manifestations included heart septal fibrosis and non-sustained left ventricular tachycardia combined with fifth finger camptodactyly, hypoplastic breast, abnormal teeth, and mental retardation. Target Sanger sequencing and array-based comparative genome hybridization confirmed the lack of pathogenic mutations and large-scale deletions in TBX3 (12q24.21), the only gene known to be associated with UMS cases to date. Based on the results of whole-exome sequencing, 14 potential candidate variants were identified. Among them, a novel missense variant in SYNM gene (exon 1, c.173C > T, p.A58V), encoding intermediate filament protein synemin was characterized. Until the present, no association between SYNM mutations and congenital clinical syndromes has been reported. At the same time, taking into account synemin tissue-specific expression profiles and available data on abnormal knock-out mice phenotypes, we propose SYNM as a candidate gene contributing to the UMS-like phenotype. Further comprehensive functional studies are required to evaluate possible involvement of SYNM in genesis of complex heart-limb pathology.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Artem Kiselev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Elena Parmon
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Women’s and Children’s Health, Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
| |
Collapse
|
15
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [PMID: 29470962 DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are increasingly implicated in the prevention and treatment of cancers apart from their known inhibitory effects on eicosanoid production. One of the NSAIDs, indomethacin, in particular shows promising antineoplastic outcome against glioma. To extend such finding, we here studied in human H4 and U87 glioma cells the possible involvement of the ceramide/protein phosphatase 2 A (PP2A)/Akt axis in the indomethacin-induced apoptosis. We found that the induced apoptosis was accompanied by a series of biochemical events, including intracellular ceramide generation, PP2A activation, Akt dephosphorylation, Mcl-1 and FLICE inhibiting protein (FLIP) transcriptional downregulation, Bax mitochondrial distribution, and caspase 3 activation. Such events were also duplicated with a cell-permeable C2-ceramide and Akt inhibitor LY294002. Pharmacological inhibition of ceramide synthase by fumonisin B1 and PP2A by okadaic acid moderately attenuated indomethacin-induced Akt dephosphorylation along with the apoptosis. Results suggested that the ceramide/PP2A/Akt axis is involved in the apoptosis and a possible cyclooxygenase-independent target for indomethacin. Furthermore, apoptosis regulatory proteins such as Mcl-1 and FLIP are potential downstream effectors of this axis and their downregulation could turn on the apoptotic program.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Jiaan-Der Wang
- Department of Pediatrics & Child Health Care, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Boulevard, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Boulevard, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
16
|
Criswell S, O’Brien T, Skalli O. Presence of intermediate filament protein synemin in select sarcomas. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1438757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sheila Criswell
- Department of Clinical Laboratory Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas O’Brien
- Memphis Pathology Group, Department of Pathology, Methodist University Hospital, Memphis, TN, USA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
17
|
García-Pelagio KP, Chen L, Joca HC, Ward C, Jonathan Lederer W, Bloch RJ. Absence of synemin in mice causes structural and functional abnormalities in heart. J Mol Cell Cardiol 2018; 114:354-363. [PMID: 29247678 PMCID: PMC5850968 DOI: 10.1016/j.yjmcc.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Cardiomyopathies have been linked to changes in structural proteins, including intermediate filament (IF) proteins located in the cytoskeleton. IFs associate with the contractile machinery and costameres of striated muscle and with intercalated disks in the heart. Synemin is a large IF protein that mediates the association of desmin with Z-disks and stabilizes intercalated disks. It also acts as an A-kinase anchoring protein (AKAP). In murine skeletal muscle, the absence of synemin causes a mild myopathy. Here, we report that the genetic silencing of synemin in mice (synm -/-) causes left ventricular systolic dysfunction at 3months and 12-16months of age, and left ventricular hypertrophy and dilatation at 12-16months of age. Isolated cardiomyocytes showed alterations in calcium handling that indicate defects intrinsic to the heart. Although contractile and costameric proteins remained unchanged in the old synm -/- hearts, we identified alterations in several signaling proteins (PKA-RII, ERK and p70S6K) critical to cardiomyocyte function. Our data suggest that synemin plays an important regulatory role in the heart and that the consequences of its absence are profound.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Physics, School of Science, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04320, Mexico
| | - Ling Chen
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Medicine, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Humberto C Joca
- BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av Prof. Alfredo Balena, 190, Belo Horizonte, MG 30130, Brazil
| | - Christopher Ward
- School of Nursing and Department of Orthopedics, School of Medicine, University of Maryland,100 Penn St, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Skalli O. The cytoskeleton meets the skeleton. Focus on "Deficiency of the intermediate filament synemin reduces bone mass in vivo". Am J Physiol Cell Physiol 2016; 311:C837-C838. [PMID: 27784680 DOI: 10.1152/ajpcell.00303.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Omar Skalli
- Department of Life Sciences, The University of Memphis, Memphis, Tennessee
| |
Collapse
|
19
|
Parlakian A, Paulin D, Izmiryan A, Xue Z, Li Z. Intermediate filaments in peripheral nervous system: Their expression, dysfunction and diseases. Rev Neurol (Paris) 2016; 172:607-613. [DOI: 10.1016/j.neurol.2016.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022]
|
20
|
Du TT, Wang L, Duan CL, Lu LL, Zhang JL, Gao G, Qiu XB, Wang XM, Yang H. GBA deficiency promotes SNCA/α-synuclein accumulation through autophagic inhibition by inactivated PPP2A. Autophagy 2016; 11:1803-20. [PMID: 26378614 DOI: 10.1080/15548627.2015.1086055] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in the gene encoding GBA (glucocerebrosidase, β, acid), the enzyme deficient in the lysosomal storage disorder Gaucher disease, elevate the risk of Parkinson disease (PD), which is characterized by the misprocessing of SNCA/α-synuclein. However, the mechanistic link between GBA deficiency and SNCA accumulation remains poorly understood. In this study, we found that loss of GBA function resulted in increased levels of SNCA via inhibition of the autophagic pathway in SK-N-SH neuroblastoma cells, primary rat cortical neurons, or the rat striatum. Furthermore, expression of the autophagy pathway component BECN1 was downregulated as a result of the GBA knockdown-induced decrease in glucocerebrosidase activity. Most importantly, inhibition of autophagy by loss of GBA function was associated with PPP2A (protein phosphatase 2A) inactivation via Tyr307 phosphorylation. C2-ceramide (C2), a PPP2A agonist, activated autophagy in GBA-silenced cells, while GBA knockdown-induced SNCA accumulation was reversed by C2 or rapamycin (an autophagy inducer), suggesting that PPP2A plays an important role in the GBA knockdown-mediated inhibition of autophagy. These findings demonstrate that loss of GBA function may contribute to SNCA accumulation through inhibition of autophagy via PPP2A inactivation, thereby providing a mechanistic basis for the increased PD risk associated with GBA deficiency.
Collapse
Affiliation(s)
- Ting-Ting Du
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China.,b Key Laboratory of Cell Proliferation and Regulation Biology; Ministry of Education; College of Life Sciences; Beijing Normal University ; Beijing , China
| | - Le Wang
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Chun-Li Duan
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Ling-Ling Lu
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Jian-Liang Zhang
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Ge Gao
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Xiao-Bo Qiu
- b Key Laboratory of Cell Proliferation and Regulation Biology; Ministry of Education; College of Life Sciences; Beijing Normal University ; Beijing , China
| | - Xiao-Min Wang
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| | - Hui Yang
- a Center of Parkinson Disease Beijing Institute for Brain Disorders; Key Laboratory for Neurodegenerative Disease of the Ministry of Education; Department of Neurobiology Capital Medical University ; Beijing , China
| |
Collapse
|
21
|
|
22
|
Quick Q, Paul M, Skalli O. Roles and potential clinical applications of intermediate filament proteins in brain tumors. Semin Pediatr Neurol 2015; 22:40-8. [PMID: 25976260 DOI: 10.1016/j.spen.2014.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filament (IF) proteins are cytoplasmic and nuclear cytoskeletal proteins. Of the ~70 IF proteins, nearly 12 are found in the nervous system, where their expression is largely cell-type specific. Astrocytes express glial fibrillary acidic protein (GFAP), whereas different neuron types contain neurofilament proteins, α-internexin, or peripherin. These proteins are often downregulated in brain cancer. In addition, brain cancer cells may also contain vimentin, nestin, and synemin, which are the IF proteins found in neural progenitor cells. In different brain tumor types, the expression of nestin, vimentin, and α-internexin appears to correlate with the clinical outcome. Experimental investigations have also demonstrated that IF proteins have distinct roles in specific brain tumor cell behaviors: nestin, for instance, is important for the proliferation of glioma cells, whereas synemin also affect their mobility. The mechanisms responsible for these effects involve the interaction of IF proteins with specific signaling pathways. Synemin, for instance, positively regulates glioma cell proliferation by antagonizing protein phosphatase 2A. Further evidence for the potential of IF proteins as therapeutic targets derives from animal models showing the influence of IF proteins on tumor growth. Nestin downregulation, for instance, dramatically reduced intracerebral glioma growth. Selective targeted therapies of IFs to date primarily include gene therapy approaches using nestin or GFAP gene promoters to drive transgene expression into glioma cells. Although attempts to identify small molecules specifically antagonizing IF proteins have been unsuccessful to date, it is anticipated that the identification of such compounds will be instrumental in expanding therapeutic approaches for brain tumors.
Collapse
Affiliation(s)
- Quincy Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN
| | - Madhumita Paul
- Department of Biological Sciences, The University of Memphis, Memphis, TN
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN.
| |
Collapse
|
23
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
24
|
Kapoor S. Synemin: an evolving role in tumor growth and progression. J Cachexia Sarcopenia Muscle 2014; 5:347-8. [PMID: 24865380 PMCID: PMC4248404 DOI: 10.1007/s13539-013-0122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023] Open
|
25
|
Li Z, Parlakian A, Coletti D, Alonso-Martin S, Hourdé C, Joanne P, Gao-Li J, Blanc J, Ferry A, Paulin D, Xue Z, Agbulut O. Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy. J Cell Sci 2014; 127:4589-601. [PMID: 25179606 DOI: 10.1242/jcs.143164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.
Collapse
Affiliation(s)
- Zhenlin Li
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Ara Parlakian
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Dario Coletti
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Sonia Alonso-Martin
- Sorbonne Universités, UPMC Univ-Paris 06, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris-France
| | - Christophe Hourdé
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Pierre Joanne
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Jacqueline Gao-Li
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Jocelyne Blanc
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ-Paris 06, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris-France
| | - Denise Paulin
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Zhigang Xue
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| |
Collapse
|
26
|
Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol 2014; 34:144-53. [DOI: 10.1016/j.matbio.2013.10.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
27
|
Skalli O, Wilhelmsson U, Örndahl C, Fekete B, Malmgren K, Rydenhag B, Pekny M. Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins. Hum Pathol 2013; 44:2081-8. [DOI: 10.1016/j.humpath.2013.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/15/2022]
|
28
|
Khammanivong A, Wang C, Sorenson BS, Ross KF, Herzberg MC. S100A8/A9 (calprotectin) negatively regulates G2/M cell cycle progression and growth of squamous cell carcinoma. PLoS One 2013; 8:e69395. [PMID: 23874958 PMCID: PMC3706396 DOI: 10.1371/journal.pone.0069395] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/14/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chengxing Wang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brent S. Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Karen F. Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
29
|
Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int 2013; 63:180-94. [PMID: 23796501 DOI: 10.1016/j.neuint.2013.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/01/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
Alpha-synuclein (α-Syn) is the principal protein component of Lewy bodies, a pathological hallmark of Parkinson's disease (PD). This protein may regulate protein phosphatase 2A (PP2A) activity, although the molecular mechanisms for α-Syn-mediated regulation of PP2A and the potential neuroprotective actions of PP2A against PD-associated pathology remain largely unexplored. We found that α-Syn gene overexpression in SK-N-SH cells and primary neurons led to PP2A/C phosphorylation at Y307, a known target of Src kinase, and consequent phosphatase inhibition. In addition, phospho-activated Src (p-Y416 Src, pSrc) was higher in SK-N-SH cells and primary neurons overexpressing α-Syn. Thus, α-Syn may promote Src activation and PP2A inactivation, leading to hyperphosphorylation of proteins. Immunoprecipitation revealed higher calmodulin/Src complex formation in α-Syn-overexpressing cells and α-Syn transgenic mice. A TUNEL apoptosis assay and an MTT cell viability assay demonstrated that the PP2A activator C2-ceramide protected neurons against α-Syn-induced cell injury. Buffering the Ca(2+) elevations induced by α-Syn overexpression ameliorated the cytotoxicity of α-Syn. Our findings define a potential molecular mechanism for α-Syn-mediated regulation of PP2A through formation of the calmodulin/Src complex, activation of Src, and Src-mediated phospho-inhibition of PP2A. Overexpression of α-Syn may lead to neurodegeneration in PD in part by suppressing the endogenous neuroprotective activity of PP2A.
Collapse
Affiliation(s)
- W Yang
- Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | | | | | | | | |
Collapse
|
30
|
Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 2013; 140:13-22. [PMID: 23749407 DOI: 10.1007/s00418-013-1101-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie and Transgenese, LUNAM, UPRES EA-3143, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, Université d'Angers, 49033, Angers, France
| | | |
Collapse
|