1
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
2
|
Hirsch SM, Edwards F, Shirasu-Hiza M, Dumont J, Canman JC. Functional midbody assembly in the absence of a central spindle. J Cell Biol 2022; 221:e202011085. [PMID: 34994802 PMCID: PMC8751756 DOI: 10.1083/jcb.202011085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F-like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2-dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle-independent midbodies appeared to form via contractile ring constriction-driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.
Collapse
Affiliation(s)
- Sophia M. Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Frances Edwards
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Julien Dumont
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
3
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
4
|
Li XH, Ju JQ, Pan ZN, Wang HH, Wan X, Pan MH, Xu Y, Sun MH, Sun SC. PRC1 is a critical regulator for anaphase spindle midzone assembly and cytokinesis in mouse oocyte meiosis. FEBS J 2020; 288:3055-3067. [PMID: 33206458 DOI: 10.1111/febs.15634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
5
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
6
|
Liang Z, Li X, Chen J, Cai H, Zhang L, Li C, Tong J, Hu W. PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer. Transl Cancer Res 2019; 8:2059-2072. [PMID: 35116955 PMCID: PMC8799135 DOI: 10.21037/tcr.2019.09.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Background This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Bioinformatics analysis was performed. Cell culture and plasmid construction were conducted for cell transfection. mRNA and protein expression, cell proliferation, migration, and cell cycle were detected. Mice models were also constructed. The relationship between PRC1 and the prognosis of NSCLC patients was analyzed. Results PRC1 expression was higher in tumor tissues than adjacent non-tumor tissues (P<0.05). Cells transfected with the high-expression PRC1 plasmid (TOPO-PRC1 group) had the stronger ability of proliferation and migration (P<0.05) along with a lower incidence of stay at the G2/M phase (P<0.05) than the low-expression PRC1 plasmid. Mice models showed tumors obtained from mice in the TOPO-PRC1 group significantly grew faster, larger, and heavier (P<0.05) than the low-expression PRC1 group. Among the 150 NSCLC patients, patients with the higher PRC1 expression were more likely to have lymph node metastasis occur (P<0.05) and progress into an advanced stage (P<0.05), and showed shorter survival (P<0.05). Moreover, the TOPO-PRC1 group had a lower phosphorylation level, and a lower expression of Cip1/p21 (P<0.05) and Kip1/p27 (P<0.01). Conclusions PRC1 could promote cell proliferation and cell cycle progression through FAK-paxillin pathway molecules and the regulation of the phosphorylation level of p21/p27-pRB family molecules. PRC1 might be a new and promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jian Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Haina Cai
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Liqun Zhang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Chenwei Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jingjie Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Wentao Hu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| |
Collapse
|
7
|
She ZY, Wei YL, Lin Y, Li YL, Lu MH. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biol Rev Camb Philos Soc 2019; 94:2033-2048. [PMID: 31343816 DOI: 10.1111/brv.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ya-Lan Wei
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yang Lin
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
8
|
Johnston KJA, Adams MJ, Nicholl BI, Ward J, Strawbridge RJ, Ferguson A, McIntosh AM, Bailey MES, Smith DJ. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2019; 15:e1008164. [PMID: 31194737 PMCID: PMC6592570 DOI: 10.1371/journal.pgen.1008164] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and represents a significant socioeconomic and public health burden. Several aspects of chronic pain, for example back pain and a severity-related phenotype 'chronic pain grade', have been shown previously to be complex heritable traits with a polygenic component. Additional pain-related phenotypes capturing aspects of an individual's overall sensitivity to experiencing and reporting chronic pain have also been suggested as a focus for investigation. We made use of a measure of the number of sites of chronic pain in individuals within the UK general population. This measure, termed Multisite Chronic Pain (MCP), is a complex trait and its genetic architecture has not previously been investigated. To address this, we carried out a large-scale genome-wide association study (GWAS) of MCP in ~380,000 UK Biobank participants. Our findings were consistent with MCP having a significant polygenic component, with a Single Nucleotide Polymorphism (SNP) heritability of 10.2%. In total 76 independent lead SNPs at 39 risk loci were associated with MCP. Additional gene-level association analyses identified neurogenesis, synaptic plasticity, nervous system development, cell-cycle progression and apoptosis genes as enriched for genetic association with MCP. Genetic correlations were observed between MCP and a range of psychiatric, autoimmune and anthropometric traits, including major depressive disorder (MDD), asthma and Body Mass Index (BMI). Furthermore, in Mendelian randomisation (MR) analyses a causal effect of MCP on MDD was observed. Additionally, a polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread pain (pain all over the body), indicating the existence of genetic variants contributing to both of these pain phenotypes. Overall, our findings support the proposition that chronic pain involves a strong nervous system component with implications for our understanding of the physiology of chronic pain. These discoveries may also inform the future development of novel treatment approaches.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Deanery of Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Mark J. Adams
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
9
|
Swider ZT, Ng RK, Varadarajan R, Fagerstrom CJ, Rusan NM. Fascetto interacting protein ensures proper cytokinesis and ploidy. Mol Biol Cell 2019; 30:992-1007. [PMID: 30726162 PMCID: PMC6589905 DOI: 10.1091/mbc.e18-09-0573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.
Collapse
Affiliation(s)
- Zachary T Swider
- Graduate Program in Cell and Molecular Biology, University of Wisconsin, Madison, WI 53606
| | - Rachel K Ng
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 2018; 678:90-99. [DOI: 10.1016/j.gene.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
11
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
12
|
Yang HB, Jiang J, Li LL, Yang HQ, Zhang XY. Biomarker identification of thyroid associated ophthalmopathy using microarray data. Int J Ophthalmol 2018; 11:1482-1488. [PMID: 30225222 DOI: 10.18240/ijo.2018.09.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
AIM To uncover the underlying pathogenesis of thyroid associated ophthalmopathy (TAO) and explore potential biomarkers of this disease. METHODS The expression profile GSE9340, which was downloaded from Gene Expression Omnibus database, included 18 specimens from 10 TAO patients and 8 hyperthyroidism patients without ophthalmopathy. The platform was HumanRef-8 v2 Expression BeadChip. Raw data were normalized using preprocess. Core package and the differentially expressed genes (DEGs) were identified based on t-test with limma package of R. Functional enrichment analyses were performed recruiting the DAVID tool. Based on STRING database, a protein-protein interaction (PPI) network was constructed, from which a module was extracted. The functional enrichment for genes in the module was performed by the BinGO plugin. RESULTS In total, 861 DEGs (433 up-regulated and 428 down-regulated) between TAO patients and hyperthyroidism patients without ophthalmopathy were identified. Crucial nodes in the PPI network included TPX2, CDCA5, PRC1, KIF23 and MKI67, which were also remarkable in the module and all enriched in cell cycle process. Additionally, MKI67 was highly correlated with TAO. Besides, the DEGs of GTF2F1, SMC3, USF1 and ZNF263 were predicted as transcription factors (TFs). CONCLUSION Several crucial genes are identified such as TPX2, CDCA5, PRC1 and KIF23, which all might play significant roles in TAO via the regulation of cell cycle process. Regulatory relationships between TPX2 and CDCA5 as well as between PRC1 and KIF23 may exist. Additionally, MKI67 may be a potent biomarker of TAO, and SMC3 and ZNF263 may exert their roles as TFs in TAO progression.
Collapse
Affiliation(s)
- Hong-Bin Yang
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang Province, China
| | - Jie Jiang
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang Province, China
| | - Lu-Lu Li
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang Province, China
| | - Huang-Qiang Yang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang Province, China
| | - Xiao-Yu Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150080, Heilongjiang Province, China
| |
Collapse
|
13
|
Perchey RT, Serres MP, Nowosad A, Creff J, Callot C, Gay A, Manenti S, Margolis RL, Hatzoglou A, Besson A. p27 Kip1 regulates the microtubule bundling activity of PRC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1630-1639. [PMID: 30327204 DOI: 10.1016/j.bbamcr.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27Kip1 (p27). p27 is a cyclin-CDK inhibitor that causes cell cycle arrest in G1. However, p27 has also been involved in the regulation of G2/M progression and cytokinesis, as well as of other cellular processes, including actin and microtubule cytoskeleton dynamics. We found that p27 interferes with the ability of PRC1 to bind to microtubules, without affecting PRC1 dimerization or its capacity to interact with other partners such as KIF4. In this way, p27 inhibited microtubule bundling by PRC1 in vitro and prevented the extensive microtubule bundling phenotype caused by PRC1 overexpression in cells in culture. Finally, co-expression of p27 or a p27 mutant that does not bind cyclin-CDKs inhibited multinucleation induced by PRC1 overexpression. Together, our results suggest that p27 may participate in the regulation of mitotic progression in a CDK-independent manner by modulating PRC1 activity.
Collapse
Affiliation(s)
- Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Alexandre Gay
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Robert L Margolis
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anastassia Hatzoglou
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France.
| |
Collapse
|
14
|
Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci U S A 2018; 115:E5326-E5333. [PMID: 29784807 PMCID: PMC6003357 DOI: 10.1073/pnas.1800352115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development. MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.
Collapse
|
15
|
Wu F, Shi X, Zhang R, Tian Y, Wang X, Wei C, Li D, Li X, Kong X, Liu Y, Guo W, Guo Y, Zhou H. Regulation of proliferation and cell cycle by protein regulator of cytokinesis 1 in oral squamous cell carcinoma. Cell Death Dis 2018; 9:564. [PMID: 29752448 PMCID: PMC5948203 DOI: 10.1038/s41419-018-0618-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/24/2018] [Indexed: 02/05/2023]
Abstract
Protein regulator of cytokinesis 1 (PRC1), a microtubule-associated protein, has emerged as a critical regulator of proliferation and apoptosis, acting predominantly in numerous tumors. However, its function in oral squamous cell carcinoma (OSCC) is still unknown. To establish the roles of PRC1 in OSCC, 95 oral clinical samples (54 OSCC, 24 oral leukoplakia [OLK], and 17 normal oral mucosa) and seven oral cell lines (6 OSCC and 1 normal oral cell lines) were analyzed using a series of molecular and genomic assays both in vivo and in vitro were conducted in this study. Herein, we provide evidence demonstrating that expression of PRC1 closely correlates with the degree of epithelial dysplasia in OLK (n = 24) (p < 0.001), and the poor differentiation, large tumor volume, lymph node metastasis, and high-clinical stage in OSCC (n = 54) (p < 0.05), illustrating that PRC1 has a promotive influence on tumor progression in OSCC. Simultaneously, we observed that PRC1 knockdown in OSCC cell lines caused G2/M phase arrest (p < 0.05), inhibited cell proliferation in vitro (p < 0.05) and tumor growth in vivo (p < 0.001). Furthermore, the effects of PRC1 on the regulation of proliferation and cell cycle transition in OSCC samples were mediated by p53. The p53/PRC1/EGFR signaling pathway was found to be implicated in the tumor progression of OSCC. Based on our data, we demonstrate that PRC1 is a key factor in regulating proliferation and the cell cycle, pointing to the potential benefits of PRC1-targeted therapies for OSCC.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xueke Shi
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rui Zhang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiangjian Wang
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Changlei Wei
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Duo Li
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiangli Kong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yurong Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Weihua Guo
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Yiqing Guo
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China. .,Department of Stomatology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, Shandong, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Nguyen PA, Field CM, Mitchison TJ. Prc1E and Kif4A control microtubule organization within and between large Xenopus egg asters. Mol Biol Cell 2017; 29:304-316. [PMID: 29187577 PMCID: PMC5996955 DOI: 10.1091/mbc.e17-09-0540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 11/11/2022] Open
Abstract
The cleavage furrow in Xenopus zygotes is positioned by two large microtubule asters that grow out from the poles of the first mitotic spindle. Where these asters meet at the midplane, they assemble a disk-shaped interaction zone consisting of anti-parallel microtubule bundles coated with chromosome passenger complex (CPC) and centralspindlin that instructs the cleavage furrow. Here we investigate the mechanism that keeps the two asters separate and forms a distinct boundary between them, focusing on the conserved cytokinesis midzone proteins Prc1 and Kif4A. Prc1E, the egg orthologue of Prc1, and Kif4A were recruited to anti-parallel bundles at interaction zones between asters in Xenopus egg extracts. Prc1E was required for Kif4A recruitment but not vice versa. Microtubule plus-end growth slowed and terminated preferentially within interaction zones, resulting in a block to interpenetration that depended on both Prc1E and Kif4A. Unexpectedly, Prc1E and Kif4A were also required for radial order of large asters growing in isolation, apparently to compensate for the direction-randomizing influence of nucleation away from centrosomes. We propose that Prc1E and Kif4, together with catastrophe factors, promote "anti-parallel pruning" that enforces radial organization within asters and generates boundaries to microtubule growth between asters.
Collapse
Affiliation(s)
- P A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,Marine Biological Laboratory, Woods Hole, MA 02543
| | - C M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,Marine Biological Laboratory, Woods Hole, MA 02543
| | - T J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115 .,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
17
|
Zhang L, Huang Q, Lou J, Zou L, Wang Y, Zhang P, Yang G, Zhang J, Yu L, Yan D, Zhang C, Qiao J, Wang S, Wang S, Xu Y, Ji H, Chen Z, Zhang Z. A novel PHD-finger protein 14/KIF4A complex overexpressed in lung cancer is involved in cell mitosis regulation and tumorigenesis. Oncotarget 2017; 8:19684-19698. [PMID: 28160558 PMCID: PMC5386714 DOI: 10.18632/oncotarget.14962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 01/03/2017] [Indexed: 12/26/2022] Open
Abstract
The plant homeodomain (PHD) finger-containing proteins have been implicated in many human diseases including cancer. In this study, we found that PHF14, a newly identified PHD finger protein, is highly expressed in lung cancer. The high expression level of PHF14 was associated with adenocarcinoma and poor survival in lung cancer patients. Knocking down PHF14 suppressed cancer cell growth and carcinogenesis, while over-expressing PHF14 promoted cell proliferation. During cell division, PHF14 directly bound to and co-localized with KIF4A (a nuclear motor protein involved in lung carcinogenesis) to form a functional complex. Similarly to the effect of KIF4A depletion, silencing PHF14 in several cell lines caused cell mitotic defects, prolonged M phase, and inhibited cell proliferation. What's more, these two proteins had a synergistic effect on cell proliferation and were significantly co-overexpressed in lung cancer tissues. Our data provide new insights into the biological significance of PHD finger proteins and imply that PHF14 may be a potential biomarker for lung cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Qin Huang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Jiatao Lou
- Shanghai Lung Tumor Clinical Medical Center, Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Liangjian Zou
- Institute of Cardiothoracic Surgery, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China
| | - Yiguo Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Zhang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Guang Yang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Junyi Zhang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Lan Yu
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Dai Yan
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Chenyi Zhang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Jing Qiao
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Shuting Wang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Sai Wang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China
| | - Yongdong Xu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, SIBCB, SIBS, CAS, Shanghai, China
| | - Zhengjun Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China.,Cancer Research Center, Shanghai Xu-Hui Central Hospital, Shanghai Clinical Center, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Science (CAS), Shanghai, China.,Cancer Research Center, Shanghai Xu-Hui Central Hospital, Shanghai Clinical Center, CAS, Shanghai, China
| |
Collapse
|
18
|
Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald JC, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Raj SS, Gertz S, Grunwell JR, Lindsell CJ. Improved Risk Stratification in Pediatric Septic Shock Using Both Protein and mRNA Biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med 2017; 196:494-501. [PMID: 28324661 DOI: 10.1164/rccm.201701-0066oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE We previously derived and validated the Pediatric Sepsis Biomarker Risk Model (PERSEVERE) to estimate baseline mortality risk in children with septic shock. The PERSEVERE biomarkers are serum proteins selected from among the proteins directly related to 80 mortality risk assessment genes. The initial approach to selecting the PERSEVERE biomarkers left 68 genes unconsidered. OBJECTIVES To determine if the 68 previously unconsidered genes can improve upon the performance of PERSEVERE and to provide biological information regarding the pathophysiology of septic shock. METHODS We reduced the number of variables by determining the biological linkage of the 68 previously unconsidered genes. The genes identified through variable reduction were combined with the PERSEVERE-based mortality probability to derive a risk stratification model for 28-day mortality using classification and regression tree methodology (n = 307). The derived tree, PERSEVERE-XP, was then tested in a separate cohort (n = 77). MEASUREMENTS AND MAIN RESULTS Variable reduction revealed a network consisting of 18 mortality risk assessment genes related to tumor protein 53 (TP53). In the derivation cohort, PERSEVERE-XP had an area under the receiver operating characteristic curve (AUC) of 0.90 (95% confidence interval, 0.85-0.95) for differentiating between survivors and nonsurvivors. In the test cohort, the AUC was 0.96 (95% confidence interval, 0.91-1.0). The AUC of PERSEVERE-XP was superior to that of PERSEVERE. CONCLUSIONS PERSEVERE-XP combines protein and mRNA biomarkers to provide mortality risk stratification with possible clinical utility. PERSEVERE-XP significantly improves on PERSEVERE and suggests a role for TP53-related cellular division, repair, and metabolism in the pathophysiology of septic shock.
Collapse
Affiliation(s)
- Hector R Wong
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio.,2 Department of Pediatrics and
| | | | - Nick Anas
- 4 Children's Hospital of Orange County, Orange, California
| | | | - Neal J Thomas
- 6 Penn State Children's Hospital, Hershey, Pennsylvania
| | | | - Scott L Weiss
- 8 The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Paul A Checchia
- 9 Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Keith Meyer
- 10 Miami Children's Hospital, Miami, Florida
| | - Michael Quasney
- 11 C. S. Mott Children's Hospital at the University of Michigan, Ann Arbor, Michigan
| | - Mark Hall
- 12 Nationwide Children's Hospital, Columbus, Ohio
| | - Rainer Gedeit
- 13 Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | | | - Jeffrey Nowak
- 15 Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota
| | - Shekhar S Raj
- 16 Riley Hospital for Children, Indianapolis, Indiana
| | - Shira Gertz
- 17 Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey; and
| | | | - Christopher J Lindsell
- 19 Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
19
|
Shi H, Zhang L, Qu Y, Hou L, Wang L, Zheng M. Prognostic genes of breast cancer revealed by gene co-expression network analysis. Oncol Lett 2017; 14:4535-4542. [PMID: 29085450 PMCID: PMC5649579 DOI: 10.3892/ol.2017.6779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to identify genes that may serve as markers for breast cancer prognosis by constructing a gene co-expression network and mining modules associated with survival. Two gene expression datasets of breast cancer were downloaded from ArrayExpress and genes from these datasets with a coefficient of variation >0.5 were selected and underwent functional enrichment analysis with the Database for Annotation, Visualization and Integration Discovery. Gene co-expression networks were constructed with the WGCNA package in R. Modules were identified from the network via cluster analysis. Cox regression was conducted to analyze survival rates. A total of 2,669 genes were selected, and functional enrichment analysis of them revealed that they were mainly associated with the immune response, cell proliferation, cell differentiation and cell adhesion. Seven modules were identified from the gene co-expression network, one of which was found to be significantly associated with patient survival time. Expression status of 144 genes from this module was used to cluster patient samples into two groups, with a significant difference in survival time revealed between these groups. These genes were involved in the cell cycle and tumor protein p53 signaling pathway. The top 10 hub genes were identified in the module. The findings of the present study could advance the understanding of the molecular pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Huijie Shi
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanjun Qu
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lifang Hou
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ling Wang
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Min Zheng
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
20
|
Abstract
Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.
Collapse
|
21
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
22
|
Lian ATY, Hains PG, Sarcevic B, Robinson PJ, Chircop M. IQGAP1 is associated with nuclear envelope reformation and completion of abscission. Cell Cycle 2015; 14:2058-74. [PMID: 25928398 DOI: 10.1080/15384101.2015.1044168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The final stage of mitosis is cytokinesis, which results in 2 independent daughter cells. Cytokinesis has 2 phases: membrane ingression followed by membrane abscission. IQGAP1 is a scaffold protein that interacts with proteins implicated in mitosis, including F-actin, myosin and CaM. IQGAP1 in yeast recruits actin and myosin II filaments to the contractile ring for membrane ingression. In contrast, we show that mammalian IQGAP1 is not required for ingression, but coordinates nuclear pore complex (NPC) reassembly and completion of abscission. Depletion of IQGAP1 disrupts Nup98 and mAb414 nuclear envelope localization and delays abscission timing. IQGAP1 phosphorylation increases 15-fold upon mitotic entry at S86, S330 and T1434, with the latter site being targeted by CDK2/Cyclin A and CDK1/Cyclin A/B in vitro. Expressing the phospho-deficient mutant IQGAP1-S330A impairs NPC reassembly in cells undergoing abscission. Thus, mammalian IQGAP1 functions later in mitosis than its yeast counterpart to regulate nuclear pore assembly in a S330 phosphorylation-dependent manner during the abscission phase of cytokinesis.
Collapse
Affiliation(s)
- Audrey T Y Lian
- a Children's Medical Research Institute; The University of Sydney ; Westmead , New South Wales , Australia
| | | | | | | | | |
Collapse
|
23
|
Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, Wu C, Jiang J. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells 2014; 37:812-8. [PMID: 25377255 PMCID: PMC4255101 DOI: 10.14348/molcells.2014.0210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/18/2022] Open
Abstract
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Changqing Lu
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Jun Xie
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Tongbing Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Yan Tan
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| |
Collapse
|
24
|
Iglesias Gómez JC, Mosquera Orgueira A. An integrative analysis of meningioma tumors reveals the determinant genes and pathways of malignant transformation. Front Oncol 2014; 4:147. [PMID: 25003081 PMCID: PMC4066933 DOI: 10.3389/fonc.2014.00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/28/2014] [Indexed: 01/18/2023] Open
Abstract
Meningiomas are frequent central nervous system neoplasms, which despite their predominant benignity, show sporadically malignant behavior. Type 2 neurofibromatosis and polymorphisms in several genes have been associated with meningioma risk and are probably involved in its pathogenesis. Although GWAS studies have found loci related to meningioma risk, little is known about the factors determining malignant transformation. Thus, this study is aimed to identify the genomic and transcriptomic factors influencing evolution from benignity toward aggressive phenotypes. By applying an integrative bioinformatics pipeline combining public information on a wealth of biological layers of complexity (from genetic polymorphisms to protein interactions), this study identified a module of co-expressed genes highly correlated with tumor stage and statistically linked to several genomic regions (module Quantitative Trait Loci, mQTLs). Ontology analysis of the transcription hub genes identified microtubule-associated cell-cycle processes as key drivers of such network. mQTLs and single nucleotide polymorphisms associated with meningioma stage were replicated in an alternative meningioma cohort, and integration of these results with up-to-date scientific literature and several databases retrieved a list of genes and pathways with a potentially important role in meningioma malignancy. As a result, cytoskeleton and cell-cell adhesion pathways, calcium-channels and glutamate receptors, as well as oxidoreductase and endoplasmic reticulum-associated degradation pathways were found to be the most important and redundant findings associated to meningioma progression. This study presents an integrated view of the pathways involved in meningioma malignant conversion and paves the way for the development of new research lines that will improve our understanding of meningioma biology.
Collapse
|
25
|
Kitazawa D, Matsuo T, Kaizuka K, Miyauchi C, Hayashi D, Inoue YH. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis. PLoS One 2014; 9:e93669. [PMID: 24850412 PMCID: PMC4029619 DOI: 10.1371/journal.pone.0093669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Peripheral microtubules (MTs) near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR) in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daishi Kitazawa
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Tatsuru Matsuo
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kana Kaizuka
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Chie Miyauchi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H. Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
- * E-mail:
| |
Collapse
|
26
|
Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CAM, Doxey DK, Mathieson T, Hancock BA, Baptiste D, Atale R, Hickenbotham M, Zhu J, Glasscock J, Storniolo AMV, Zheng F, Doerge RW, Liu Y, Badve S, Radovich M, Clare SE. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014; 16:R26. [PMID: 24636070 PMCID: PMC4053088 DOI: 10.1186/bcr3627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
Collapse
|
27
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, Mulherkar R. Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2013; 2:836-48. [PMID: 24403257 PMCID: PMC3892388 DOI: 10.1002/cam4.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide, with developing countries accounting for >80% of the disease burden. Although in the West, active screening has been instrumental in reducing the incidence of cervical cancer, disease management is hampered due to lack of biomarkers for disease progression and defined therapeutic targets. Here we carried out gene expression profiling of 29 cervical cancer tissues from Indian women, spanning International Federation of Gynaecology and Obstetrics (FIGO) stages of the disease from early lesion (IA and IIA) to progressive stages (IIB and IIIA–B), and identified distinct gene expression signatures. Overall, metabolic pathways, pathways in cancer and signaling pathways were found to be significantly upregulated, while focal adhesion, cytokine–cytokine receptor interaction and WNT signaling were downregulated. Additionally, we identified candidate biomarkers of disease progression such as SPP1, proliferating cell nuclear antigen (PCNA), STK17A, and DUSP1 among others that were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in the samples used for microarray studies as well in an independent set of 34 additional samples. Integrative analysis of our results with other cervical cancer profiling studies could facilitate the development of multiplex diagnostic markers of cervical cancer progression.
Collapse
Affiliation(s)
- Asha Thomas
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Subramanian R, Ti SC, Tan L, Darst SA, Kapoor TM. Marking and measuring single microtubules by PRC1 and kinesin-4. Cell 2013; 154:377-90. [PMID: 23870126 DOI: 10.1016/j.cell.2013.06.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/10/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
Error-free cell division depends on the assembly of the spindle midzone, a specialized array of overlapping microtubules that emerges between segregating chromosomes during anaphase. The molecular mechanisms by which a subset of dynamic microtubules from the metaphase spindle are selected and organized into a stable midzone array are poorly understood. Here, we show using in vitro reconstitution assays that PRC1 and kinesin-4, two microtubule-associated proteins required for midzone assembly, can tag microtubule plus ends. Remarkably, the size of these tags is proportional to filament length. We determine the crystal structure of the PRC1 homodimer and map the protein-protein interactions needed for tagging microtubule ends. Importantly, length-dependent microtubule plus-end-tagging by PRC1 is also observed in dividing cells. Our findings suggest how biochemically similar microtubules can be differentially marked, based on length, for selective regulation during the formation of specialized arrays, such as those required for cytokinesis.
Collapse
Affiliation(s)
- Radhika Subramanian
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
30
|
Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk J, Chait BT, Rout MP, Luna EJ. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 2013; 24:3603-19. [PMID: 24088567 PMCID: PMC3842989 DOI: 10.1091/mbc.e12-10-0714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis.
Collapse
Affiliation(s)
- Tara C Smith
- Program in Cell and Developmental Dynamics, Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065 Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA 01545
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mitchison TJ, Nguyen P, Coughlin M, Groen AC. Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol. Mol Biol Cell 2013; 24:1559-73. [PMID: 23515222 PMCID: PMC3655816 DOI: 10.1091/mbc.e12-12-0850] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pineapples, or self-organized, Taxol-stabilized microtubule assemblies, reveal the richness of self-organizing mechanisms that operate on assembled microtubules during cell division and provide a biochemically tractable system for investigating these mechanisms during meiosis and cytokinesis. Previous study of self-organization of Taxol-stabilized microtubules into asters in Xenopus meiotic extracts revealed motor-dependent organizational mechanisms in the spindle. We revisit this approach using clarified cytosol with glycogen added back to supply energy and reducing equivalents. We added probes for NUMA and Aurora B to reveal microtubule polarity. Taxol and dimethyl sulfoxide promote rapid polymerization of microtubules that slowly self-organize into assemblies with a characteristic morphology consisting of paired lines or open circles of parallel bundles. Minus ends align in NUMA-containing foci on the outside, and plus ends in Aurora B–containing foci on the inside. Assemblies have a well-defined width that depends on initial assembly conditions, but microtubules within them have a broad length distribution. Electron microscopy shows that plus-end foci are coated with electron-dense material and resemble similar foci in monopolar midzones in cells. Functional tests show that two key spindle assembly factors, dynein and kinesin-5, act during assembly as they do in spindles, whereas two key midzone assembly factors, Aurora B and Kif4, act as they do in midzones. These data reveal the richness of self-organizing mechanisms that operate on microtubules after they polymerize in meiotic cytoplasm and provide a biochemically tractable system for investigating plus-end organization in midzones.
Collapse
|
32
|
RhoGEF and positioning of rappaport-like furrows in the early Drosophila embryo. Curr Biol 2012; 22:2037-41. [PMID: 23022066 DOI: 10.1016/j.cub.2012.08.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/26/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
Early Drosophila embryogenesis is characterized by shifting from astral microtubule-based to central spindle-based positioning of cleavage furrows. Before cellularization, astral microtubules determine metaphase furrow position by producing Rappaport-like furrows, which encompass rather than bisect the spindle. Their positioning is explained by our finding that the conserved central spindle components centralspindlin (mKLP1 and RacGAP50C), Polo, and Fascetto (Prc1) localize to the astral microtubule overlap region. These components and the chromosomal passenger complex localize to the central spindle, though no furrow forms there. We identify the maternally supplied RhoGEF2 as a key factor in metaphase furrow positioning. Unlike the zygotic, central spindle-localized RhoGEF (Pebble), RhoGEF2 localizes to metaphase furrows, a function distinct from RhoGEF/Pebble and likely due to the absence of a RacGAP50C binding domain. Accordingly, we find that ectopic activation of Rho GTPase generates furrows perpendicular to the central spindle during syncytial divisions. Whereas metaphase furrow formation is myosin independent, these ectopic furrows, like conventional furrows, require myosin as well as microtubules. These studies demonstrate that early Drosophila embryogenesis is primed to form furrows at either overlapping astral microtubules or the central spindle. We propose that the shift to the latter is driven by a corresponding shift from RhoGEF2 to Pebble in controlling furrow formation.
Collapse
|
33
|
Argiros H, Henson L, Holguin C, Foe V, Shuster CB. Centralspindlin and chromosomal passenger complex behavior during normal and Rappaport furrow specification in echinoderm embryos. Cytoskeleton (Hoboken) 2012; 69:840-53. [PMID: 22887753 DOI: 10.1002/cm.21061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 01/25/2023]
Abstract
The chromosomal passenger (CPC) and Centralspindlin complexes are essential for organizing the anaphase central spindle and providing cues that position the cytokinetic furrow between daughter nuclei. However, echinoderm zygotes are also capable of forming "Rappaport furrows" between asters positioned back-to-back without intervening chromosomes. To understand how these complexes contribute to normal and Rappaport furrow formation, we studied the localization patterns of Survivin and mitotic-kinesin-like-protein1 (MKLP1), members respectively of the CPC and the Centralspindlin complex, and the effect of CPC inhibition on cleavage in mono- and binucleate echinoderm zygotes. In zygotes, Survivin initially localized to metaphase chromosomes, upon anaphase onset relocalized to the central spindle and then, together with MKLP1 spread towards the equatorial cortex in an Aurora-dependent manner. Inhibition of Aurora kinase activity resulted in disruption of central spindle organization and furrow regression, although astral microtubule elongation and furrow initiation were normal. In binucleate cells containing two parallel spindles MKLP1 and Survivin localized to the plane of the former metaphase plate, but were not observed in the secondary cleavage plane formed between unrelated spindle poles, except when chromosomes were abnormally present there. However, the secondary furrow was sensitive to Aurora inhibition, indicating that Aurora kinase may still contribute to furrow ingression without chromosomes nearby. Our results provide insights that reconcile classic micromanipulation studies with current molecular understanding of furrow specification in animal cells.
Collapse
Affiliation(s)
- Haroula Argiros
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|