1
|
Lamb H, Fernholz M, Liro MJ, Myles KM, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere. Genetics 2025; 229:iyaf020. [PMID: 39891664 PMCID: PMC12005263 DOI: 10.1093/genetics/iyaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Małgorzata J Liro
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Krista M Myles
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Jafari G, Khan LA, Zhang H, Membreno E, Yan S, Dempsey G, Gobel V. Branched-chain actin dynamics polarizes vesicle trajectories and partitions apicobasal epithelial membrane domains. SCIENCE ADVANCES 2023; 9:eade4022. [PMID: 37379384 PMCID: PMC10306301 DOI: 10.1126/sciadv.ade4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane- and junction-based polarity cues such as the partitioning-defective PARs specify the positions of apicobasal membrane domains. Recent findings indicate, however, that intracellular vesicular trafficking can determine the position of the apical domain, upstream of membrane-based polarity cues. These findings raise the question of how vesicular trafficking becomes polarized independent of apicobasal target membrane domains. Here, we show that the apical directionality of vesicle trajectories depends on actin dynamics during de novo polarized membrane biogenesis in the C. elegans intestine. We find that actin, powered by branched-chain actin modulators, determines the polarized distribution of apical membrane components, PARs, and itself. Using photomodulation, we demonstrate that F-actin travels through the cytoplasm and along the cortex toward the future apical domain. Our findings support an alternative polarity model where actin-directed trafficking asymmetrically inserts the nascent apical domain into the growing epithelial membrane to partition apicobasal membrane domains.
Collapse
Affiliation(s)
- Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Graham Dempsey
- Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Wang JM, Li ZF, Qi HY, Zhao Z, Yang WX. es-Arp3 and es-Eps8 regulate spermatogenesis via microfilaments in the seminiferous tubule of Eriocheir sinensis. Tissue Cell 2023; 81:102028. [PMID: 36709695 DOI: 10.1016/j.tice.2023.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complicated process that includes spermatogonia differentiation, spermatocytes meiosis, spermatids spermiogenesis and final release of spermatozoa. Actin-related protein 3 (Arp3) and epidermal growth factor receptor pathway substrate 8 (Eps8) are two actin binding proteins that regulate cell adhesion in seminiferous tubules during mammalian spermatogenesis. However, the functions of these two proteins during spermatogenesis in nonmammalian species, especially Crustacea, are still unknown. Here, we cloned es-Arp3 and es-Eps8 from the testis of Chinese mitten crab Eriocheir sinensis. es-Arp3 and es-Eps8 were located in spermatocytes, spermatids and spermatozoa. Knockdown of es-Arp3 and es-Eps8 in vivo caused morphological changes to seminiferous tubules including delayed spermatozoa release, shedding of germ cells and vacuoles. Filamentous-actin (F-actin) filaments network was disorganized due to deficiency of es-Arp3 and es-Eps8. Accompanying this, four junctional proteins (α-catenin, β-catenin, pinin and ZO1) displayed abnormal expression levels as well as penetrating biotin signals in seminiferous tubules. We also used the Arp2/3 complex inhibitor CK666 to block es-Arp3 activity and supported es-Arp3 knockdown results. In summary, our study demonstrated for the first time that es-Arp3 and es-Eps8 are important for spermatogenesis via regulating microfilament-mediated cell adhesion in Eriocheir sinensis.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
6
|
Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. Methods Mol Biol 2021. [PMID: 34542852 DOI: 10.1007/978-1-0716-1661-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.
Collapse
|
7
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Chan FY, Silva AM, Saramago J, Pereira-Sousa J, Brighton HE, Pereira M, Oegema K, Gassmann R, Carvalho AX. The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol Biol Cell 2018; 30:96-107. [PMID: 30403552 PMCID: PMC6337913 DOI: 10.1091/mbc.e18-07-0471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis completes cell division by constriction of an actomyosin contractile ring that separates the two daughter cells. Here we use the early Caenorhabditis elegans embryo to explore how the actin filament network in the ring and the surrounding cortex is regulated by the single cytokinesis formin CYK-1 and the ARP2/3 complex, which nucleate nonbranched and branched filaments, respectively. We show that CYK-1 and the ARP2/3 complex are the predominant F-actin nucleators responsible for generating distinct cortical F-actin architectures and that depletion of either nucleator affects the kinetics of cytokinesis. CYK-1 is critical for normal F-actin levels in the contractile ring, and acute inhibition of CYK-1 after furrow ingression slows ring constriction rate, suggesting that CYK-1 activity is required throughout ring constriction. Surprisingly, although the ARP2/3 complex does not localize in the contractile ring, depletion of the ARP2 subunit or treatment with ARP2/3 complex inhibitor delays contractile ring formation and constriction. We present evidence that the delays are due to an excess in formin-nucleated cortical F-actin, suggesting that the ARP2/3 complex negatively regulates CYK-1 activity. We conclude that the kinetics of cytokinesis are modulated by interplay between the two major actin filament nucleators.
Collapse
Affiliation(s)
- Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Pereira-Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Hailey E Brighton
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Marisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Sasidharan S, Borinskaya S, Patel F, Bernadskaya Y, Mandalapu S, Agapito M, Soto MC. WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Dev Biol 2017; 434:133-148. [PMID: 29223862 DOI: 10.1016/j.ydbio.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Actin is an integral component of epithelial apical junctions, yet the interactions of branched actin regulators with apical junction components are still not clear. Biochemical data have shown that α-catenin inhibits Arp2/3-dependent branched actin. These results suggested that branched actin is only needed at earliest stages of apical junction development. We use live imaging in developing C. elegans embryos to test models for how WAVE-induced branched actin collaborates with other apical junction proteins during the essential process of junction formation and maturation. We uncover both early and late essential roles for WAVE in apical junction formation. Early, as the C. elegans intestinal epithelium becomes polarized, we find that WAVE components become enriched concurrently with the Cadherin components and before the DLG-1 apical accumulation. Live imaging of F-actin accumulation in polarizing intestine supports that the Cadherin complex components and branched actin regulators work together for apical actin enrichment. Later in junction development, the apical accumulation of WAVE and Cadherin components is shown to be interdependent: Cadherin complex loss alters WAVE accumulation, and WAVE complex loss increases Cadherin accumulation. To determine why Cadherin levels rise when WVE-1 is depleted, we use FRAP to analyze Cadherin dynamics and find that loss of WAVE as well as of the trafficking protein EHD-1/RME-1 increases Cadherin dynamics. EM studies in adults depleted of branched actin regulators support that WVE-1 maintains established junctions, presumably through its trafficking effect on Cadherin. Thus we propose a developmental model for junction formation where branched actin regulators are tightly interconnected with Cadherin junctions through their previously unappreciated role in Cadherin transport.
Collapse
Affiliation(s)
- Shashikala Sasidharan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sofya Borinskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Falshruti Patel
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yelena Bernadskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sailaja Mandalapu
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria Agapito
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Abstract
Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early
Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in
C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev
et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in
C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of
cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.
Collapse
Affiliation(s)
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Ding WY, Ong HT, Hara Y, Wongsantichon J, Toyama Y, Robinson RC, Nédélec F, Zaidel-Bar R. Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. J Cell Biol 2017; 216:1371-1386. [PMID: 28400443 PMCID: PMC5412556 DOI: 10.1083/jcb.201603070] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/11/2017] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
The cell cortex is essential to maintain animal cell shape, and contractile forces generated within it by nonmuscle myosin II (NMY-2) drive cellular morphogenetic processes such as cytokinesis. The role of actin cross-linking proteins in cortical dynamics is still incompletely understood. Here, we show that the evolutionarily conserved actin bundling/cross-linking protein plastin is instrumental for the generation of potent cortical actomyosin contractility in the Caenorhabditis elegans zygote. PLST-1 was enriched in contractile structures and was required for effective coalescence of NMY-2 filaments into large contractile foci and for long-range coordinated contractility in the cortex. In the absence of PLST-1, polarization was compromised, cytokinesis was delayed or failed, and 50% of embryos died during development. Moreover, mathematical modeling showed that an optimal amount of bundling agents enhanced the ability of a network to contract. We propose that by increasing the connectivity of the F-actin meshwork, plastin enables the cortex to generate stronger and more coordinated forces to accomplish cellular morphogenesis.
Collapse
Affiliation(s)
- Wei Yung Ding
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yusuke Hara
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jantana Wongsantichon
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
15
|
Carlos AJ, Tong L, Prieto GA, Cotman CW. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking. J Neuroinflammation 2017; 14:29. [PMID: 28153028 PMCID: PMC5290618 DOI: 10.1186/s12974-017-0803-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 01/25/2023] Open
Abstract
Background Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer’s disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. Methods This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. Results We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. Conclusions We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA. .,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Wang PS, Chou FS, Ramachandran S, Xia S, Chen HY, Guo F, Suraneni P, Maher BJ, Li R. Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 2016; 143:2741-52. [PMID: 27385014 PMCID: PMC5004905 DOI: 10.1242/dev.130542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex – the unique actin nucleator that produces branched actin networks – plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment. Summary: During mouse cortical development, the Arp2/3 actin branching complex regulates process formation and the maintenance of radial glial cell polarity, as well as affecting neuronal migration.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Fu-Sheng Chou
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Praveen Suraneni
- Division of Hematology/Oncology, Robert Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 4940 Eastern Ave., Baltimore, MD 21224, USA Department of Neuroscience, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
18
|
Xiao X, Mruk DD, Tang EI, Massarwa R, Mok KW, Li N, Wong CKC, Lee WM, Snapper SB, Shilo BZ, Schejter ED, Cheng CY. N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet 2014; 10:e1004447. [PMID: 24967734 PMCID: PMC4072540 DOI: 10.1371/journal.pgen.1004447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation. Mammalian spermatogenesis takes place within a sheltered environment, whereby somatic Sertoli cells protect and guide germ cells as they mature and differentiate. A key structure generated by the protective Sertoli cell epithelium is the blood-testis barrier (BTB), a composite of junctional and cytoskeletal elements, which prevents exposure of post-meiotic spermatids to the immune system. The BTB is a highly dynamic structure, which needs to be dismantled and rapidly rebuilt, in order to allow passage of maturing preleptotene spermatocytes, without compromising their isolation. Here we show that N-WASP, a conserved facilitator of formation of branched actin microfilament arrays, provides a function that is essential for maintenance of an intact BTB. Genetic disruption of N-WASP in mouse Sertoli cells leads to loss of BTB impermeability, resulting in a complete arrest of spermatogenesis at early and post-meiotic stages. Based on the localization patterns of key elements, we propose that branched-actin filaments participate in recycling of BTB materials to ensure the dynamic and efficient maintenance of this structure, one of a series of blood-tissue barriers that preserve privileged organ environments.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Dolores D. Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Elizabeth I. Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - R'ada Massarwa
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ka Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Will M. Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Scott B. Snapper
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ben-Zion Shilo
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (EDS); (CYC)
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
- * E-mail: (EDS); (CYC)
| |
Collapse
|
19
|
Berends CWH, Muñoz J, Portegijs V, Schmidt R, Grigoriev I, Boxem M, Akhmanova A, Heck AJR, van den Heuvel S. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo. Mol Biol Cell 2013; 24:2201-15. [PMID: 23699393 PMCID: PMC3708726 DOI: 10.1091/mbc.e13-02-0076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The position of the spindle apparatus determines the plane of cell cleavage and, therefore, the size and position of daughter cells, as well as the decision between symmetric and asymmetric cell division. We show that asymmetry in cortical actin and, remarkably, an endoplasmic reticulum–localized protein contribute to proper spindle positioning in the Caenorhabditis elegans embryo. The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.
Collapse
|
20
|
Patel FB, Soto MC. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 2013; 377:319-32. [PMID: 23510716 DOI: 10.1016/j.ydbio.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
Collapse
Affiliation(s)
- Falshruti B Patel
- Department of Pathology and Laboratory Medicine, UMDNJ--Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Su W, Mruk DD, Cheng CY. Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Crit Rev Biochem Mol Biol 2013; 48:153-72. [PMID: 23339542 DOI: 10.3109/10409238.2012.758084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes are being regulated during spermatogenesis. We also provide a working model based on the latest findings in the field including our laboratory to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | |
Collapse
|
22
|
Pittman KJ, Skop AR. Anterior PAR proteins function during cytokinesis and maintain DYN-1 at the cleavage furrow in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2012; 69:826-39. [PMID: 22887994 DOI: 10.1002/cm.21053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time.
Collapse
Affiliation(s)
- Kelly J Pittman
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|