1
|
Das T, Pal S, Ganguly A. Human RecQ helicases in transcription-associated stress management: bridging the gap between DNA and RNA metabolism. Biol Chem 2021; 402:617-636. [PMID: 33567180 DOI: 10.1515/hsz-2020-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.
Collapse
Affiliation(s)
- Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
2
|
Ding D, Sun X, Pang MYH, An L, Huen MSY, Hu T, Ishibashi T. RECQL5 KIX domain splicing isoforms have distinct functions in transcription repression and DNA damage response. DNA Repair (Amst) 2020; 97:103007. [PMID: 33197722 DOI: 10.1016/j.dnarep.2020.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022]
Abstract
RecQL5, a mammalian RecQ family protein, is involved in the regulation of transcription elongation, DNA damage response, and DNA replication. Here, we identified and characterized an alternative splicing isoform of RECQL5 (RECQL5β1), which contains 17 additional amino acid residues within the RECQL5 KIX domain when compared with the canonical isoform (RECQL5β). RECQL5β1 had a markedly decreased binding affinity to RNA polymerase II (Pol II) and poorly competed with the transcription elongation factor TFIIS for binding to Pol II. As a result, this isoform has a weaker activity for repression of transcription elongation. In contrast, we discovered that RECQL5β1 could bind stronger to MRE11, which is a primary sensor of DNA double-strand breaks (DSBs). Furthermore, we found that RECQL5β1 promoted DNA repair in the RECQL5β1 rescue cells. These results suggest that RECQL5β mainly functions as a transcription repressor, while the newly discovered RECQL5β1 has a specialized role in DNA damage response. Taken together, our data suggest a cellular-functional specialization for each KIX splicing isoform in the cell.
Collapse
Affiliation(s)
- Dongbo Ding
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong SAR, China
| | - Xulun Sun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong SAR, China
| | - Matthew Y H Pang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong SAR, China
| | - Liwei An
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Taobo Hu
- Center of Breast Diseases, Peking University People's Hospital, Peking University, Beijing, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong SAR, China.
| |
Collapse
|
3
|
Jain CK, Mukhopadhyay S, Ganguly A. RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy. Anticancer Agents Med Chem 2020; 20:1311-1326. [PMID: 32418530 DOI: 10.2174/1871520620666200518082433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Replication fork reversal and restart has gained immense interest as a central response mechanism to replication stress following DNA damage. Although the exact mechanism of fork reversal has not been elucidated precisely, the involvement of diverse pathways and different factors has been demonstrated, which are central to this phenomenon. RecQ helicases known for their vital role in DNA repair and maintaining genome stability has recently been implicated in the restart of regressed replication forks. Through interaction with vital proteins like Poly (ADP) ribose polymerase 1 (PARP1), these helicases participate in the replication fork reversal and restart phenomenon. Most therapeutic agents used for cancer chemotherapy act by causing DNA damage in replicating cells and subsequent cell death. These DNA damages can be repaired by mechanisms involving fork reversal as the key phenomenon eventually reducing the efficacy of the therapeutic agent. Hence the factors contributing to this repair process can be good selective targets for developing more efficient chemotherapeutic agents. In this review, we have discussed in detail the role of various proteins in replication fork reversal and restart with special emphasis on RecQ helicases. Involvement of other proteins like PARP1, recombinase rad51, SWI/SNF complex has also been discussed. Since RecQ helicases play a central role in the DNA damage response following chemotherapeutic treatment, we propose that targeting these helicases can emerge as an alternative to available intervention strategies. We have also summarized the current research status of available RecQ inhibitors and siRNA based therapeutic approaches that targets RecQ helicases. In summary, our review gives an overview of the DNA damage responses involving replication fork reversal and provides new directions for the development of more efficient and sustainable chemotherapeutic approaches.
Collapse
Affiliation(s)
- Chetan K Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Swagata Mukhopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
4
|
Idris M, Harmston N, Petretto E, Madan B, Virshup DM. Broad regulation of gene isoform expression by Wnt signaling in cancer. RNA (NEW YORK, N.Y.) 2019; 25:1696-1713. [PMID: 31506381 PMCID: PMC6859862 DOI: 10.1261/rna.071506.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/06/2019] [Indexed: 05/08/2023]
Abstract
Differential gene isoform expression is a ubiquitous mechanism to enhance proteome diversity and maintain cell homeostasis. Mechanisms such as splicing that drive gene isoform variability are highly dynamic and responsive to changes in cell signaling pathways. Wnt/β-catenin signaling has profound effects on cell activity and cell fate and is known to modify several splicing events by altering the expression of individual splicing factors. However, a global assessment of how extensively Wnt signaling regulates splicing and other mechanisms that determine mRNA isoform composition in cancer is lacking. We used deep time-resolved RNA-seq in two independent in vivo Wnt-addicted tumor models during treatment with the potent Wnt inhibitor ETC-159 and examined Wnt regulated splicing events and splicing regulators. We found 1025 genes that underwent Wnt regulated variable exon usage leading to isoform expression changes. This was accompanied by extensive Wnt regulated changes in the expression of splicing regulators. Many of these Wnt regulated events were conserved in multiple human cancers, and many were linked to previously defined cancer-associated splicing quantitative trait loci. This suggests that the Wnt regulated splicing events are components of fundamental oncogenic processes. These findings demonstrate the wide-ranging effects of Wnt signaling on the isoform composition of the cell and provides an extensive resource of expression changes of splicing regulators and gene isoforms regulated by Wnt signaling.
Collapse
Affiliation(s)
- Muhammad Idris
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
| | - Nathan Harmston
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857
- Science Division, Yale-NUS College, Singapore, 138527
| | - Enrico Petretto
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857
| | - Babita Madan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina 27705, USA
| |
Collapse
|
5
|
Olson HC, Davis L, Kiianitsa K, Khoo KJ, Liu Y, Knijnenburg TA, Maizels N. Increased levels of RECQ5 shift DNA repair from canonical to alternative pathways. Nucleic Acids Res 2019; 46:9496-9509. [PMID: 30107528 PMCID: PMC6182128 DOI: 10.1093/nar/gky727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
RECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions. We show that RECQ5 gene amplification correlates with increased gene expression in human tumors, by in silico analysis of over 9000 individual tumors representing 32 tumor types in the TCGA dataset. We demonstrate that, at double-strand breaks, increased RECQ5 levels inhibited canonical homology-directed repair (HDR) by double-stranded DNA donors, phenocopying the effect of BRCA deficiency. Conversely, at nicks, increased RECQ5 levels stimulated 'alternative' HDR by single-stranded DNA donors, which is normally suppressed by RAD51; this was accompanied by stimulation of mutagenic end-joining. Even modest changes (2-fold) in RECQ5 levels caused significant dysregulation of repair, especially HDR. These results suggest that in some tumors, RECQ5 gene amplification may have profound consequences for genomic instability.
Collapse
Affiliation(s)
- Henry C Olson
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kevin J Khoo
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.,Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Theo A Knijnenburg
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109, USA
| | - Nancy Maizels
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.,Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
6
|
Zhu X, Chen H, Yang Y, Xu C, Zhou J, Zhou J, Chen Y. Distinct prognosis of mRNA expression of the five RecQ DNA-helicase family members - RECQL, BLM, WRN, RECQL4, and RECQL5 - in patients with breast cancer. Cancer Manag Res 2018; 10:6649-6668. [PMID: 30584360 PMCID: PMC6287649 DOI: 10.2147/cmar.s185769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Five RecQ helicase family members have a role in maintaining genome stability. However, their prognostic roles in breast cancer remain unknown. We aimed to investigate the prognostic values of the RecQ family and clinical outcomes in breast cancer. Methods We used the Kaplan-Meier Plotter database (http://kmplot.com/analysis) to analyze prognostic values of RecQ-family mRNA expression in all breast cancers and in different intrinsic subtypes and clinicopathological characteristics. Protein-expression levels of WRN and RECQL4 were confirmed by immunohistochemistry (IHC) in breast cancer tissues. Results Increased expression of RECQL mRNA was significantly associated with reduced relapse-free survival (RFS) and postprogression survival (PPS) in all breast cancers, and improved overall survival (OS) in patients with basal-like breast cancer and in mutant-p53-type breast cancer patients. Increased expression of BLM mRNA was correlated with reduced distant metastasis-free survival (DMFS) in all patients. Increased expression of WRN mRNA was associated with improved OS and RFS in breast cancer patients. Increased expression of RECQL4 mRNA was associated with reduced OS, DMFS, and RFS in all breast cancers, and with reduced OS in patients with luminal A, HER2-positive, ER-positive, and PR-positive breast cancer. Increased expression of RECQL5 mRNA was associated with improved RFS in all patients, and with improved OS in patients with lymph-node-negative breast cancer, but with reduced OS in patients with HER2-positive breast cancer. IHC staining confirmed that high expression of WRN was correlated with increased OS and high expression of RECQL4 associated with reduced OS at protein levels. Conclusion mRNA-expression levels of RecQ members were significantly correlated with prognosis in breast cancer patients. These preliminary findings require further study to determine whether RecQ-targeting reagents might be developed for clinical application in breast cancer.
Collapse
Affiliation(s)
- Xuan Zhu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Huihui Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Yi Yang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,Department of Breast Surgery, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Chunjing Xu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Jun Zhou
- Department of Breast Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiaojiao Zhou
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| | - Yiding Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China, .,The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China,
| |
Collapse
|
7
|
Altered RECQL5 expression in urothelial bladder carcinoma increases cellular proliferation and makes RECQL5 helicase activity a novel target for chemotherapy. Oncotarget 2018; 7:76140-76150. [PMID: 27764811 PMCID: PMC5342802 DOI: 10.18632/oncotarget.12683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
RECQ helicases are a family of enzymes with both over lapping and unique functions. Functional autosomal recessive loss of three members of the family BLM, WRN and RECQL4, results in hereditary human syndromes characterized by cancer predisposition and premature aging, but despite the finding that RECQL5 deficient mice are cancer prone, no such link has been made to human RECQL5. Here we demonstrate that human urothelial carcinoma of the bladder (UCC) has increased expression of RECQL5 compared to normal bladder tissue and that increasing RECQL5 expression can drive proliferation of normal bladder cells and is associated with poor prognosis. Further, by expressing a helicase dead RECQL5 and by depleting bladder cancer cells of RECQL5 we show that inhibition of RECQL5 activity has potential as a new target for treatment of UCC.
Collapse
|
8
|
Kochan JA, Desclos EC, Bosch R, Meister L, Vriend LE, van Attikum H, Krawczyk PM. Meta-analysis of DNA double-strand break response kinetics. Nucleic Acids Res 2017; 45:12625-12637. [PMID: 29182755 PMCID: PMC5728399 DOI: 10.1093/nar/gkx1128] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their functionality and underlying mechanisms of action. However, comparison and systemic interpretation of these data is challenging due to their scattered nature and differing experimental approaches. Here, we extracted, analyzed and compared the available results describing accumulation of 79 DSBR proteins at sites of DNA damage, which can be further explored using Cumulus (http://www.dna-repair.live/cumulus/)-the accompanying interactive online application. Despite large inter-study variability, our analysis revealed that the accumulation of most proteins starts immediately after damage induction, occurs in parallel and peaks within 15-20 min. Various DSBR pathways are characterized by distinct accumulation kinetics with major non-homologous end joining proteins being generally faster than those involved in homologous recombination, and signaling and chromatin remodeling factors accumulating with varying speeds. Our meta-analysis provides, for the first time, comprehensive overview of the temporal organization of the DSBR in mammalian cells and could serve as a reference for future mechanistic studies of this complex process.
Collapse
Affiliation(s)
- Jakub A. Kochan
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Emilie C.B. Desclos
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Bosch
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Luna Meister
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Lianne E.M. Vriend
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Przemek M. Krawczyk
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Stirnweiss A, Oommen J, Kotecha RS, Kees UR, Beesley AH. Molecular-genetic profiling and high-throughput in vitro drug screening in NUT midline carcinoma-an aggressive and fatal disease. Oncotarget 2017; 8:112313-112329. [PMID: 29348827 PMCID: PMC5762512 DOI: 10.18632/oncotarget.22862] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
NUT midline carcinoma (NMC) is a rare and aggressive cancer, with survival typically less than seven months, that can arise in people of any age. Genetically, NMC is defined by the chromosomal fusion of NUTM1 with a chromatin-binding partner, typically the bromodomain-containing protein BRD4. However, little is known about other genetic aberrations in this disease. In this study, we used a unique panel of cell lines to describe the molecular-genetic features of NMC. Next-generation sequencing identified a recurring high-impact mutation in the DNA-helicase gene RECQL5 in 75% of lines studied, and biological signals from mutation-signature and network analyses consistent with a general failure in DNA-repair. A high-throughput drug screen confirmed that microtubule inhibitors, topoisomerase inhibitors and anthracyclines are highly cytotoxic in the majority of NMC lines, and that cell lines expressing the BRD4-NUTM1 (exon11:exon2) variant are an order of magnitude more responsive to bromodomain inhibitors (iBETs) on average than those with other BRD4-NUTM1 translocation variants. We also identified a highly significant correlation between iBET and aurora kinase inhibitor efficacy in this study. Integration of exome sequencing, transcriptome, and drug sensitivity profiles suggested that aberrant activity of the nuclear receptor co-activator NCOA3 may correlate with poor response to iBETs. In conclusion, our data emphasize the heterogeneity of NMC and highlights genetic aberrations that could be explored to improve therapeutic strategies. The novel finding of a recurring RECQL5 mutation, together with recent reports of chromoplexy in this disease, suggests that DNA-repair pathways are likely to play a central role in NMC tumorigenesis.
Collapse
Affiliation(s)
- Anja Stirnweiss
- Leukaemia and Cancer Genetics Program, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Drug Discovery Group, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Joyce Oommen
- Leukaemia and Cancer Genetics Program, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Rishi S Kotecha
- Leukaemia and Cancer Genetics Program, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Ursula R Kees
- Leukaemia and Cancer Genetics Program, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Alex H Beesley
- Leukaemia and Cancer Genetics Program, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Newman JA, Aitkenhead H, Savitsky P, Gileadi O. Insights into the RecQ helicase mechanism revealed by the structure of the helicase domain of human RECQL5. Nucleic Acids Res 2017; 45:4231-4243. [PMID: 28100692 PMCID: PMC5397160 DOI: 10.1093/nar/gkw1362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
RecQ helicases are important maintainers of genome integrity with distinct roles in almost every cellular process requiring access to DNA. RECQL5 is one of five human RecQ proteins and is particularly versatile in this regard, forming protein complexes with a diverse set of cellular partners in order to coordinate its helicase activity to various processes including replication, recombination and DNA repair. In this study, we have determined crystal structures of the core helicase domain of RECQL5 both with and without the nucleotide ADP in two distinctly different (‘Open’ and ‘Closed’) conformations. Small angle X-ray scattering studies show that the ‘Open’ form of the protein predominates in solution and we discuss implications of this with regards to the RECQL5 mechanism and conformational changes. We have measured the ATPase, helicase and DNA binding properties of various RECQL5 constructs and variants and discuss the role of these regions and residues in the various RECQL5 activities. Finally, we have performed a systematic comparison of the RECQL5 structures with other RecQ family structures and based on these comparisons we have constructed a model for the mechano-chemical cycle of the common catalytic core of these helicases.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.,Structural Genomics Consortium, State University of Campinas, Campinas SP 13083-886, Brazil
| |
Collapse
|
11
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Woodrick J, Gupta S, Camacho S, Parvathaneni S, Choudhury S, Cheema A, Bai Y, Khatkar P, Erkizan HV, Sami F, Su Y, Schärer OD, Sharma S, Roy R. A new sub-pathway of long-patch base excision repair involving 5' gap formation. EMBO J 2017; 36:1605-1622. [PMID: 28373211 DOI: 10.15252/embj.201694920] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Base excision repair (BER) is one of the most frequently used cellular DNA repair mechanisms and modulates many human pathophysiological conditions related to DNA damage. Through live cell and in vitro reconstitution experiments, we have discovered a major sub-pathway of conventional long-patch BER that involves formation of a 9-nucleotide gap 5' to the lesion. This new sub-pathway is mediated by RECQ1 DNA helicase and ERCC1-XPF endonuclease in cooperation with PARP1 poly(ADP-ribose) polymerase and RPA The novel gap formation step is employed during repair of a variety of DNA lesions, including oxidative and alkylation damage. Moreover, RECQ1 regulates PARP1 auto-(ADP-ribosyl)ation and the choice between long-patch and single-nucleotide BER, thereby modulating cellular sensitivity to DNA damage. Based on these results, we propose a revised model of long-patch BER and a new key regulation point for pathway choice in BER.
Collapse
Affiliation(s)
- Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Suhani Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sharon Camacho
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - Sujata Choudhury
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Yi Bai
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Pooja Khatkar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Hayriye Verda Erkizan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - Yan Su
- Department of Pharmacological Sciences & Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Orlando D Schärer
- Department of Pharmacological Sciences & Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
13
|
RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. DNA Repair (Amst) 2015; 37:53-66. [PMID: 26717024 DOI: 10.1016/j.dnarep.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
The RecQ helicases play important roles in genome maintenance and DNA metabolism (replication, recombination, repair, and transcription). Five different homologs are present in humans, three of which are implicated in accelerated aging genetic disorders: Rothmund Thomson (RECQL4), Werner (WRN), and Bloom (BLM) syndromes. While the DNA helicase activities of the 5 human RecQ helicases have been extensively characterized, much less is known about their DNA double strand annealing activities. Strand annealing is an important integral enzymatic activity in DNA metabolism, including DNA repair. Here, we have characterized the strand annealing activities of all five human RecQ helicase proteins and compared them. Interestingly, the relative strand annealing activities of the five RecQ proteins are not directly (inversely) related to their helicase activities. RECQL5 possesses relatively strong annealing activity on long or small duplexed substrates compared to the other RecQs. Additionally, the strand annealing activity of RECQL5 is not inhibited by the presence of ATP, unlike the other RecQs. We also show that RECQL5 efficiently catalyzes annealing of RNA to DNA in vitro in the presence or absence of ATP, revealing a possible new function for RECQL5. Additionally, we investigate how different known RecQ interacting proteins, RPA, Ku, FEN1 and RAD51, regulate their strand annealing activity. Collectively, we find that the human RecQ proteins possess differential DNA double strand annealing activities and we speculate on their individual roles in DNA repair. This insight is important in view of the many cellular DNA metabolic actions of the RecQ proteins and elucidates their unique functions in the cell.
Collapse
|
14
|
Arora A, Abdel-Fatah TMA, Agarwal D, Doherty R, Croteau DL, Moseley PM, Hameed K, Green A, Aleskandarany MA, Rakha EA, Patterson K, Ball G, Chan SYT, Ellis IO, Bohr VA, Bryant HE, Madhusudan S. Clinicopathological and prognostic significance of RECQL5 helicase expression in breast cancers. Carcinogenesis 2015; 37:63-71. [PMID: 26586793 DOI: 10.1093/carcin/bgv163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/30/2015] [Indexed: 01/16/2023] Open
Abstract
RECQL5 is a member of the RecQ family of DNA helicases and has key roles in homologous recombination, base excision repair, replication and transcription. The clinicopathological significance of RECQL5 expression in breast cancer is unknown. In this study, we have evaluated RECQL5 mRNA expression in 1977 breast cancers, and RECQL5 protein level in 1902 breast cancers [Nottingham Tenovus series (n = 1650) and ER- cohort (n = 252)]. Expression levels were correlated to aggressive phenotypes and survival outcomes. High RECQL5 mRNA expression was significantly associated with high histological grade (P = 0.007), HER2 overexpression (P = 0.032), ER+/HER2-/high proliferation genefu subtype (P < 0.0001), integrative molecular clusters (intClust 1and 9) (P < 0.0001) and poor survival (P < 0.0001). In subgroup analysis, high RECQL5 mRNA level remains significantly associated with poor BCSS in ER+ cohort (P < 0.0001) but not in ER- cohort (P = 0.116). At the protein level, in tumours with low RAD51, high RECQL5 level was significantly associated with high histological grade (P < 0.0001), higher mitotic index (P = 0.008), dedifferentiation (P = 0.025), pleomorphism (P = 0.027) and poor survival (P = 0.003). In subgroup analysis, high RECQL5/low RAD51 remains significantly associated with poor BCSS in ER+ cohort (P = 0.010), but not in ER- cohort (P = 0.628). In multivariate analysis, high RECQL5 mRNA and high RECQL5/low RAD51 nuclear protein coexpression independently influenced survival (P = 0.022) in whole cohort and in the ER+ subgroup. Preclinically, we show that exogenous expression of RECQL5 in MCF10A cells can drive proliferation supporting an oncogenic function for RECQL5 in breast cancer. We conclude that RECQL5 is a promising biomarker in breast cancer.
Collapse
Affiliation(s)
- Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK, Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton campus, Nottingham NG11 8NS, UK
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MA 21224-6825, USA
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Khalid Hameed
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Andrew Green
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham NG51PB, UK and
| | - Mohammed A Aleskandarany
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham NG51PB, UK and
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham NG51PB, UK and
| | - Karl Patterson
- Academic Unit of Molecular Oncology, Department of Oncology, Medical School Sheffield Cancer Research Centre, University of Sheffield, Sheffield S10 2RX, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton campus, Nottingham NG11 8NS, UK
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Ian O Ellis
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MA 21224-6825, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MA 21224-6825, USA
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Department of Oncology, Medical School Sheffield Cancer Research Centre, University of Sheffield, Sheffield S10 2RX, UK
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK, Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK,
| |
Collapse
|
15
|
Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. Mol Cell Biol 2015; 35:3974-89. [PMID: 26391948 DOI: 10.1128/mcb.00427-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.
Collapse
|
16
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
17
|
Keijzers G, Maynard S, Shamanna RA, Rasmussen LJ, Croteau DL, Bohr VA. The role of RecQ helicases in non-homologous end-joining. Crit Rev Biochem Mol Biol 2014; 49:463-72. [PMID: 25048400 DOI: 10.3109/10409238.2014.942450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
Collapse
Affiliation(s)
- Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark and
| | | | | | | | | | | |
Collapse
|
18
|
Krokan HE, Sætrom P, Aas PA, Pettersen HS, Kavli B, Slupphaug G. Error-free versus mutagenic processing of genomic uracil—Relevance to cancer. DNA Repair (Amst) 2014; 19:38-47. [DOI: 10.1016/j.dnarep.2014.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Söding J, Stewart A, Svejstrup JQ. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 2014; 157:1037-49. [PMID: 24836610 PMCID: PMC4032574 DOI: 10.1016/j.cell.2014.03.048] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/21/2014] [Accepted: 03/13/2014] [Indexed: 01/03/2023]
Abstract
RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is particularly affected, with RECQL5 depletion causing a striking increase in the average rate, concurrent with increased stalling, pausing, arrest, and/or backtracking (transcription stress). RECQL5 therefore controls the movement of RNAPII across genes. Loss of RECQL5 also results in the loss or gain of genomic regions, with the breakpoints of lost regions located in genes and common fragile sites. The chromosomal breakpoints overlap with areas of elevated transcription stress, suggesting that RECQL5 suppresses such stress and its detrimental effects, and thereby prevents genome instability in the transcribed region of genes.
Collapse
Affiliation(s)
- Marco Saponaro
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, EN6 3LD, UK
| | - Theodoros Kantidakis
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, EN6 3LD, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gavin P Kelly
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Mark Heron
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Hannah Williams
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, EN6 3LD, UK
| | - Johannes Söding
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Aengus Stewart
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, EN6 3LD, UK.
| |
Collapse
|
20
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
21
|
Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst) 2014; 16:44-53. [PMID: 24674627 DOI: 10.1016/j.dnarep.2014.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.
Collapse
|
22
|
Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers. Transl Oncol 2013; 6:458-69. [PMID: 23908689 DOI: 10.1593/tlo.13238] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/05/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents.
Collapse
|
23
|
Abstract
Helicases have major roles in genome maintenance by unwinding structured nucleic acids. Their prominence is marked by various cancers and genetic disorders that are linked to helicase defects. Although considerable effort has been made to understand the functions of DNA helicases that are important for genomic stability and cellular homeostasis, the complexity of the DNA damage response leaves us with unanswered questions regarding how helicase-dependent DNA repair pathways are regulated and coordinated with cell cycle checkpoints. Further studies may open the door to targeting helicases in order to improve cancer treatments based on DNA-damaging chemotherapy or radiation.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA.
| |
Collapse
|
24
|
Kassube SA, Jinek M, Fang J, Tsutakawa S, Nogales E. Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5. Nat Struct Mol Biol 2013; 20:892-9. [PMID: 23748380 PMCID: PMC3702667 DOI: 10.1038/nsmb.2596] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/25/2013] [Indexed: 11/22/2022]
Abstract
RECQL5 is a member of the highly conserved RecQ family of DNA helicases involved in DNA repair. RECQL5 interacts with RNA polymerase II (Pol II) and inhibits transcription of protein-encoding genes by an unknown mechanism. We show that RECQL5 contacts the Rpb1 jaw domain of Pol II at a site that overlaps with the binding site for the transcription elongation factor TFIIS. Our cryo-EM structure of elongating Pol II arrested in complex with RECQL5 shows that the RECQL5 helicase domain is positioned to sterically block elongation. The crystal structure of the RECQL5 KIX domain reveals similarities with TFIIS, and binding of RECQL5 to Pol II interferes with the ability of TFIIS to promote transcriptional read-through in vitro. Together, our findings reveal a dual mode of transcriptional repression by RECQL5 that includes structural mimicry of the Pol II-TFIIS interaction.
Collapse
Affiliation(s)
- Susanne A. Kassube
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martin Jinek
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Susan Tsutakawa
- Life Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Eva Nogales
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Life Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Ramamoorthy M, May A, Tadokoro T, Popuri V, Seidman MM, Croteau DL, Bohr VA. The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair. Carcinogenesis 2013; 34:2218-30. [PMID: 23715498 DOI: 10.1093/carcin/bgt183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Popuri V, Tadokoro T, Croteau DL, Bohr VA. Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability. Crit Rev Biochem Mol Biol 2013; 48:289-99. [PMID: 23627586 DOI: 10.3109/10409238.2013.792770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA helicases are ubiquitous enzymes that catalyze unwinding of duplex DNA and function in all metabolic processes in which access to single-stranded DNA is required, including DNA replication, repair, recombination and RNA transcription. RecQ helicases are a conserved family of DNA helicases that display highly specialized and vital roles in the maintenance of genome stability. Mutations in three of the five human RecQ helicases, BLM, WRN and RECQL4 are associated with the genetic disorders Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome that are characterized by chromosomal instability, premature aging and predisposition to cancer. The biological role of human RECQL5 is only partially understood and RECQL5 has not yet been associated with any human disease. Illegitimate recombination and replication stress are hallmarks of human cancers and common instigators for genomic instability and cell death. Recql5 knockout mice are cancer prone and show increased chromosomal instability. Recql5-deficient mouse embryonic fibroblasts are sensitive to camptothecin and display elevated levels of sister chromatid exchanges. Unlike other human RecQ helicases, RECQL5 is recruited to single-stranded DNA breaks and is also proposed to play an essential role in RNA transcription. Here, we review the established roles of RECQL5 at the cross roads of DNA replication, recombination and transcription, and propose that human RECQL5 provides important backup functions in the absence of other DNA helicases.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|