1
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
2
|
Bremer KV, Wu C, Patel AA, He KL, Grunfeld AM, Chanfreau GF, Quinlan ME. Formin tails act as a switch, inhibiting or enhancing processive actin elongation. J Biol Chem 2024; 300:105557. [PMID: 38097186 PMCID: PMC10797183 DOI: 10.1016/j.jbc.2023.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.
Collapse
Affiliation(s)
- Kathryn V Bremer
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aanand A Patel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Alex M Grunfeld
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
3
|
Orman M, Landis M, Oza A, Nambiar D, Gjeci J, Song K, Huang V, Klestzick A, Hachicho C, Liu SQ, Kamm JM, Bartolini F, Vadakkan JJ, Rojas CM, Vizcarra CL. Alterations to the broad-spectrum formin inhibitor SMIFH2 modulate potency but not specificity. Sci Rep 2022; 12:13520. [PMID: 35941181 PMCID: PMC9360399 DOI: 10.1038/s41598-022-17685-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022] Open
Abstract
SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.
Collapse
Affiliation(s)
- Marina Orman
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Maya Landis
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Aisha Oza
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Joana Gjeci
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Kristen Song
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Vivian Huang
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Su Qing Liu
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Judith M Kamm
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
4
|
Lian G, Chenn A, Ekuta V, Kanaujia S, Sheen V. Formin 2 Regulates Lysosomal Degradation of Wnt-Associated β-Catenin in Neural Progenitors. Cereb Cortex 2020; 29:1938-1952. [PMID: 29659741 DOI: 10.1093/cercor/bhy073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Although neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles. Fmn2 colocalizes with β-catenin in lysosomes and promotes its degradation. Further, Fmn2 binds the E3 ligase Smurf2, enhances Smurf2-dependent ubiquitination, and degradation of Dishevelled-2 (Dvl2), thereby initiates β-catenin degradation. Finally, Fmn2 overexpression disrupts neuroepithelial integrity, neuronal migration, and proliferation-phenotypes in E13 mouse embryos, as seen with loss of Fmn2+FlnA function. Conversely, co-expression of Dvl2 with Fmn2 rescues the proliferation defect due to Fmn2 overexpression in mouse embryos. These findings suggest that there is a homeostatic feedback mechanism in the cytoskeletal-dependent regulation of neural proliferation within the cerebral cortex. Upstream, Fmn2 promotes proliferation by stabilizing the Lrp6 receptor, leading to β-catenin activation. Downstream, RhoA-activated Fmn2 promotes lysosomal degradation of Dvl2, leading to β-catenin degradation.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anjen Chenn
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Victor Ekuta
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sneha Kanaujia
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bradley AO, Vizcarra CL, Bailey HM, Quinlan ME. Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments. Mol Biol Cell 2019; 31:273-286. [PMID: 31877067 PMCID: PMC7183766 DOI: 10.1091/mbc.e19-09-0550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The actin nucleators Spire and Cappuccino synergize to promote actin assembly, but the mechanism of their synergy is controversial. Together these proteins promote the formation of actin meshes, which are conserved structures that regulate the establishment of oocyte polarity. Direct interaction between Spire and Cappuccino is required for oogenesis and for in vitro synergistic actin assembly. This synergy is proposed to be driven by elongation and the formation of a ternary complex at filament barbed ends, or by nucleation and interaction at filament pointed ends. To mimic the geometry of Spire and Cappuccino in vivo, we immobilized Spire on beads and added Cappuccino and actin. Barbed ends, protected by Cappuccino, grow away from the beads while pointed ends are retained, as expected for nucleation-driven synergy. We found that Spire is sufficient to bind barbed ends and retain pointed ends of actin filaments near beads and we identified Spire’s barbed-end binding domain. Loss of barbed-end binding increases nucleation by Spire and synergy with Cappuccino in bulk pyrene assays and on beads. Importantly, genetic rescue by the loss-of-function mutant indicates that barbed-end binding is not necessary for oogenesis. Thus, increased nucleation is a critical element of synergy both in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander O Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hannah M Bailey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
6
|
A M, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 2019; 21:592-602. [PMID: 30962575 PMCID: PMC6501848 DOI: 10.1038/s41556-019-0307-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
Inverted formin 2 (INF2) is a member of the formin family of actin assembly factors. Dominant missense mutations in INF2 are linked to two diseases: focal segmental glomerulosclerosis, a kidney disease, and Charcot-Marie-Tooth disease, a neuropathy. All of the disease mutations map to the autoinhibitory diaphanous inhibitory domain. Interestingly, purified INF2 is not autoinhibited, suggesting the existence of other cellular inhibitors. Here, we purified an INF2 inhibitor from mouse brain tissue, and identified it as a complex of lysine-acetylated actin (KAc-actin) and cyclase-associated protein (CAP). Inhibition of INF2 by CAP-KAc-actin is dependent on the INF2 diaphanous inhibitory domain (DID). Treatment of CAP-KAc-actin-inhibited INF2 with histone deacetylase 6 releases INF2 inhibition, whereas inhibitors of histone deacetylase 6 block the activation of cellular INF2. Disease-associated INF2 mutants are poorly inhibited by CAP-KAc-actin, suggesting that focal segmental glomerulosclerosis and Charcot-Marie-Tooth disease result from reduced CAP-KAc-actin binding. These findings reveal a role for KAc-actin in the regulation of an actin assembly factor by a mechanism that we call facilitated autoinhibition.
Collapse
Affiliation(s)
- Mu A
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
7
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
8
|
Patel AA, Oztug Durer ZA, van Loon AP, Bremer KV, Quinlan ME. Drosophila and human FHOD family formin proteins nucleate actin filaments. J Biol Chem 2017; 293:532-540. [PMID: 29127202 DOI: 10.1074/jbc.m117.800888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain-containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly in vitro; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Drosophila Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Drosophila Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Drosophila Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins.
Collapse
Affiliation(s)
- Aanand A Patel
- From the Molecular Biology Interdepartmental Doctoral Program
| | | | | | | | - Margot E Quinlan
- the Department of Chemistry and Biochemistry, and .,the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
9
|
New nuclear and perinuclear functions of formins. Biochem Soc Trans 2017; 44:1701-1708. [PMID: 27913680 DOI: 10.1042/bst20160187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Formin family proteins (formins) represent an evolutionary conserved protein family encoded in the genome of a wide range of eukaryotes. Formins are hallmarked by a formin homology 1 (FH1) domain juxtaposed to an FH2 domain whereby they control actin and microtubule dynamics. Not surprisingly, formins are best known as key regulators of the cytoskeleton in a variety of morphogenetic processes. However, mounting evidence implicates several formins in the assembly and organization of actin within and around the nucleus. In addition, actin-independent roles for formins have recently been discovered. In this mini-review, we summarize these findings and highlight the novel nuclear and perinulcear functions of formins. In light of the emerging new biology of formins, we also discuss the fundamental principles governing the versatile activity and multimodal regulation of these proteins.
Collapse
|
10
|
Revisiting the Phylogeny of the Animal Formins: Two New Subtypes, Relationships with Multiple Wing Hairs Proteins, and a Lost Human Formin. PLoS One 2016; 11:e0164067. [PMID: 27695129 PMCID: PMC5047451 DOI: 10.1371/journal.pone.0164067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022] Open
Abstract
Formins are a widespread family of eukaryotic cytoskeleton-organizing proteins. Many species encode multiple formin isoforms, and for animals, much of this reflects the presence of multiple conserved subtypes. Earlier phylogenetic analyses identified seven major formin subtypes in animals (DAAM, DIAPH, FHOD, FMN, FMNL, INF, and GRID2IP/delphilin), but left a handful of formins, particularly from nematodes, unassigned. In this new analysis drawing from genomic data from a wider range of taxa, nine formin subtypes are identified that encompass all the animal formins analyzed here. Included in this analysis are Multiple Wing Hairs proteins (MWH), which bear homology to formin N-terminal domains. Originally identified in Drosophila melanogaster and other arthropods, MWH-related proteins are also identified here in some nematodes (including Caenorhabditis elegans), and are shown to be related to a novel MWH-related formin (MWHF) subtype. One surprising result of this work is the discovery that a family of pleckstrin homology domain-containing formins (PHCFs) is represented in many vertebrates, but is strikingly absent from placental mammals. Consistent with a relatively recent loss of this formin, the human genome retains fragments of a defunct homologous formin gene.
Collapse
|
11
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
12
|
Sahasrabudhe A, Ghate K, Mutalik S, Jacob A, Ghose A. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo. Development 2015; 143:449-60. [PMID: 26718007 DOI: 10.1242/dev.130104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022]
Abstract
Growth cone filopodia are actin-based mechanosensory structures that are essential for chemoreception and the generation of contractile forces necessary for directional motility. However, little is known about the influence of filopodial actin structures on substrate adhesion and filopodial contractility. Formin 2 (Fmn2) localizes along filopodial actin bundles and its depletion does not affect filopodia initiation or elongation. However, Fmn2 activity is required for filopodial tip adhesion maturation and the ability of filopodia to generate traction forces. Dysregulation of filopodia in Fmn2-depleted neurons leads to compromised growth cone motility. Additionally, in mouse fibroblasts, Fmn2 regulates ventral stress fiber assembly and affects the stability of focal adhesions. In the developing chick spinal cord, Fmn2 activity is required cell-autonomously for the outgrowth and pathfinding of spinal commissural neurons. Our results reveal an unanticipated function for Fmn2 in neural development. Fmn2 regulates structurally diverse bundled actin structures, parallel filopodial bundles in growth cones and anti-parallel stress fibers in fibroblasts, in turn modulating the stability of substrate adhesions. We propose Fmn2 as a mediator of actin bundle integrity, enabling efficient force transmission to the adhesion sites.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ketakee Ghate
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Sampada Mutalik
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ajesh Jacob
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| |
Collapse
|
13
|
Belin BJ, Lee T, Mullins RD. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected]. eLife 2015; 4:e07735. [PMID: 26287480 PMCID: PMC4577826 DOI: 10.7554/elife.07735] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023] Open
Abstract
Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.
Collapse
Affiliation(s)
- Brittany J Belin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Physiology Course, Marine Biological Laboratory, Woods Hole, United States
| | - Terri Lee
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Physiology Course, Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
14
|
Oztug Durer ZA, McGillivary RM, Kang H, Elam WA, Vizcarra CL, Hanein D, De La Cruz EM, Reisler E, Quinlan ME. Metavinculin Tunes the Flexibility and the Architecture of Vinculin-Induced Bundles of Actin Filaments. J Mol Biol 2015; 427:2782-98. [PMID: 26168869 DOI: 10.1016/j.jmb.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022]
Abstract
Vinculin is an abundant protein found at cell-cell and cell-extracellular matrix junctions. In muscles, a longer splice isoform of vinculin, metavinculin, is also expressed. The metavinculin-specific insert is part of the C-terminal tail domain, the actin-binding site of both isoforms. Mutations in the metavinculin-specific insert are linked to heart disease such as dilated cardiomyopathies. Vinculin tail domain (VT) both binds and bundles actin filaments. Metavinculin tail domain (MVT) binds actin filaments in a similar orientation but does not bundle filaments. Recently, MVT was reported to sever actin filaments. In this work, we asked how MVT influences F-actin alone or in combination with VT. Cosedimentation and limited proteolysis experiments indicated a similar actin binding affinity and mode for both VT and MVT. In real-time total internal reflection fluorescence microscopy experiments, MVT's severing activity was negligible. Instead, we found that MVT binding caused a 2-fold reduction in F-actin's bending persistence length and increased susceptibility to breakage. Using mutagenesis and site-directed labeling with fluorescence probes, we determined that MVT alters actin interprotomer contacts and dynamics, which presumably reflect the observed changes in bending persistence length. Finally, we found that MVT decreases the density and thickness of actin filament bundles generated by VT. Altogether, our data suggest that MVT alters actin filament flexibility and tunes filament organization in the presence of VT. Both of these activities are potentially important for muscle cell function. Perhaps MVT allows the load of muscle contraction to act as a signal to reorganize actin filaments.
Collapse
Affiliation(s)
- Zeynep A Oztug Durer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Rebecca M McGillivary
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Hyeran Kang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
15
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
16
|
Yoo H, Roth-Johnson EA, Bor B, Quinlan ME. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis. Mol Biol Cell 2015; 26:1875-86. [PMID: 25788286 PMCID: PMC4436832 DOI: 10.1091/mbc.e14-11-1558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/10/2015] [Indexed: 11/11/2022] Open
Abstract
During Drosophila development, the formin actin nucleator Cappuccino (Capu) helps build a cytoplasmic actin mesh throughout the oocyte. Loss of Capu leads to female sterility, presumably because polarity determinants fail to localize properly in the absence of the mesh. To gain deeper insight into how Capu builds this actin mesh, we systematically characterized seven capu alleles, which have missense mutations in Capu's formin homology 2 (FH2) domain. We report that all seven alleles have deleterious effects on fly fertility and the actin mesh in vivo but have strikingly different effects on Capu's biochemical activity in vitro. Using a combination of bulk and single- filament actin-assembly assays, we find that the alleles differentially affect Capu's ability to nucleate and processively elongate actin filaments. We also identify a unique "loop" in the lasso region of Capu's FH2 domain. Removing this loop enhances Capu's nucleation, elongation, and F-actin-bundling activities in vitro. Together our results on the loop and the seven missense mutations provides mechanistic insight into formin function in general and Capu's role in the Drosophila oocyte in particular.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Chemistry and Biochemistry
| | - Elizabeth A Roth-Johnson
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095
| | - Batbileg Bor
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
17
|
Shaye DD, Greenwald I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 2015; 32:743-55. [PMID: 25771894 DOI: 10.1016/j.devcel.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We investigate how outgrowth at the basolateral cell membrane is coordinated with apical lumen formation in the development of a biological tube by characterizing exc-6, a gene required for C. elegans excretory cell (EC) tubulogenesis. We show that EXC-6 is orthologous to the human formin INF2, which polymerizes filamentous actin (F-actin) and binds microtubules (MTs) in vitro. Dominant INF2 mutations cause focal segmental glomerulosclerosis (FSGS), a kidney disease, and FSGS+Charcot-Marie-Tooth neuropathy. We show that activated INF2 can substitute for EXC-6 in C. elegans and that disease-associated mutations cause constitutive activity. Using genetic analysis and live imaging, we show that exc-6 regulates MT and F-actin accumulation at EC tips and dynamics of basolateral-localized MTs, indicating that EXC-6 organizes F-actin and MT cytoskeletons during tubulogenesis. The pathology associated with INF2 mutations is believed to reflect misregulation of F-actin, but our results suggest alternative or additional mechanisms via effects on MT dynamics.
Collapse
Affiliation(s)
- Daniel D Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
18
|
Bor B, Bois JS, Quinlan ME. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes. Cytoskeleton (Hoboken) 2015; 72:1-15. [PMID: 25557988 DOI: 10.1002/cm.21205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022]
Abstract
The Drosophila formin Cappuccino (Capu) creates an actin mesh-like structure that traverses the oocyte during midoogenesis. This mesh is thought to prevent premature onset of fast cytoplasmic streaming which normally happens during late-oogenesis. Proper cytoskeletal organization and cytoplasmic streaming are crucial for localization of polarity determinants such as osk, grk, bcd, and nanos mRNAs. Capu mutants disrupt these events, leading to female sterility. Capu is regulated by another nucleator, Spire, as well as by autoinhibition in vitro. Studies in vivo confirm that Spire modulates Capu's function in oocytes; however, how autoinhibition contributes is still unclear. To study the role of autoinhibition in flies, we expressed a Capu construct that is missing the Capu Inhibitory Domain, CapuΔN. Consistent with a gain of activity due to loss of autoinhibition, the actin mesh was denser in CapuΔN oocytes. Further, cytoplasmic streaming was delayed and fertility levels decreased. Localization of osk mRNA in early stages, and bcd and nanos in late stages, were disrupted in CapuΔN-expressing oocytes. Finally, evidence that these phenotypes were due to a loss of autoinhibition comes from coexpression of the N-terminal half of Capu with CapuΔN, which suppressed the defects in actin, cytoplasmic streaming and fertility. From these results, we conclude that Capu can be autoinhibited during Drosophila oocyte development.
Collapse
Affiliation(s)
- Batbileg Bor
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, California, 90095-1570
| | | | | |
Collapse
|
19
|
Vizcarra CL, Bor B, Quinlan ME. The role of formin tails in actin nucleation, processive elongation, and filament bundling. J Biol Chem 2014; 289:30602-30613. [PMID: 25246531 DOI: 10.1074/jbc.m114.588368] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Batbileg Bor
- Molecular Biology Interdepartmental Ph.D. Program, and University of California Los Angeles, Los Angeles, California 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
20
|
Rasson AS, Bois JS, Pham DSL, Yoo H, Quinlan ME. Filament assembly by Spire: key residues and concerted actin binding. J Mol Biol 2014; 427:824-839. [PMID: 25234086 DOI: 10.1016/j.jmb.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
Abstract
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.
Collapse
Affiliation(s)
- Amy S Rasson
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Justin S Bois
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Duy Stephen L Pham
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Haneul Yoo
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Paul D. Boyer Hall, 611 Charles E. Young Drive East, Box 951570, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
21
|
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol 2014; 12:e1001795. [PMID: 24586110 PMCID: PMC3934834 DOI: 10.1371/journal.pbio.1001795] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
An in vitro study reveals how the three actin binding proteins profilin, formin 2, and Spire functionally cooperate by a ping-pong mechanism to regulate actin assembly during reproductive cell division. In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a “ping-pong” mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase–independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. Mammalian reproduction requires successful meiosis, which consists of two strongly asymmetric cell divisions. In meiosis I, movement of the spindle (the subcellular structure that segregates chromosomes during division) toward the oocyte cortex (the outer layer of the egg) is essential for fertility. This process requires that actin filaments assemble in a dynamic mesh, driven by three actin binding proteins, profilin, formin 2, and Spire. To date the molecular mechanisms by which these three proteins cooperate are not known. We now explore this in vitro by a combination of bulk solution and single actin filament assembly assays in the presence of profilin, Spire, and formin 2. Individually, Spire binds to actin filament ends to block their growth, and by itself, formin 2 associates poorly with filament ends, promoting fast processive assembly from the profilin-actin complex. However, when present together, Spire and formin 2 interact with one another (the formin 2 C-terminal binds to the N terminal Spire KIND domain), forming transient complexes at filament ends from which each binds alternately to the filament ends to regulate actin assembly by a ping-pong mechanism. Our in vitro observations are validated by injection studies in mouse oocytes. In oocytes, the additional interaction of Spire and formin 2 with Rab11a-myosin Vb vesicles couples high actin dynamics to vesicle traffic.
Collapse
|
22
|
Roth-Johnson EA, Vizcarra CL, Bois JS, Quinlan ME. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly. J Biol Chem 2013; 289:4395-404. [PMID: 24362037 DOI: 10.1074/jbc.m113.499921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.
Collapse
|
23
|
Renault L, Deville C, van Heijenoort C. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Cytoskeleton (Hoboken) 2013; 70:686-705. [DOI: 10.1002/cm.21140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Célia Deville
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Carine van Heijenoort
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| |
Collapse
|
24
|
Quinlan ME. Direct interaction between two actin nucleators is required in Drosophila oogenesis. Development 2013; 140:4417-25. [PMID: 24089467 DOI: 10.1242/dev.097337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as maternal effect genes in Drosophila. Mutation in either locus results in the same phenotypes, including absence of the mesh, linking them functionally. Both proteins nucleate actin filaments. Spir and Capu also interact directly with each other in vitro, suggesting a novel synergistic mode of regulating actin. In order to understand how and why proteins with similar biochemical activity would be required in the same biological pathway, genetic experiments were designed to test whether a direct interaction between Spir and Capu is required during oogenesis. Indeed, data in this study indicate that Spir and Capu must interact directly with one another and then separate to function properly. Furthermore, these actin regulators are controlled by a combination of mechanisms, including interaction with one another, functional inhibition and regulation of their protein levels. Finally, this work demonstrates for the first time in a multicellular organism that the ability of a formin to assemble actin filaments is required for a specific structure.
Collapse
Affiliation(s)
- Margot E Quinlan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|