1
|
Guo Z, Wang X, Li Y, Xing A, Wu C, Li D, Wang C, de Bures A, Zhang Y, Guo S, Sáez-Vasquez J, Shen Z, Hu Z. Arabidopsis SMO2 modulates ribosome biogenesis by maintaining the RID2 abundance during organ growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:96-109. [PMID: 36705084 DOI: 10.1111/tpj.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Ribosome biogenesis is a process of making ribosomes that is tightly linked with plant growth and development. Here, through a suppressor screen for the smo2 mutant, we found that lack of a ribosomal stress response mediator, ANAC082 partially restored growth defects of the smo2 mutant, indicating SMO2 is required for the repression of nucleolar stress. Consistently, the smo2 knock-out mutant exhibited typical phenotypes characteristic of ribosome biogenesis mutants, such as pointed leaves, aberrant leaf venation, disrupted nucleolar structure, abnormal distribution of rRNA precursors, and enhanced tolerance to aminoglycoside antibiotics that target ribosomes. SMO2 interacted with ROOT INITIATION DEFECTIVE 2 (RID2), a methyltransferase-like protein required for pre-rRNA processing. SMO2 enhanced RID2 solubility in Escherichia coli and the loss of function of SMO2 in plant cells reduced RID2 abundance, which may result in abnormal accumulation of FIBRILLARIN 1 (FIB1) and NOP56, two key nucleolar proteins, in high-molecular-weight protein complex. Taken together, our results characterized a novel plant ribosome biogenesis factor, SMO2 that maintains the abundance of RID2, thereby sustaining ribosome biogenesis during plant organ growth.
Collapse
Affiliation(s)
- Zhengfei Guo
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaoyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yan Li
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Aiming Xing
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Chengyun Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| | - Daojun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Chunfei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Anne de Bures
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5096, 66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Universite Perpignan Via Domitia, 66860, Perpignan, Unité Mixte de Recherche 5096, France
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, 442000, Shiyan, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| | - Julio Sáez-Vasquez
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5096, 66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Universite Perpignan Via Domitia, 66860, Perpignan, Unité Mixte de Recherche 5096, France
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| |
Collapse
|
2
|
Liu C, Guo H, Zhao X, Zou B, Sun T, Feng J, Zeng Z, Wen X, Chen J, Hu Z, Lou S, Li H. Overexpression of 18S rRNA methyltransferase CrBUD23 enhances biomass and lutein content in Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2023; 11:1102098. [PMID: 36815903 PMCID: PMC9935685 DOI: 10.3389/fbioe.2023.1102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional modification of nucleic acids including transfer RNA (tRNA), ribosomal RNA (rRNA) and messenger RNA (mRNA) is vital for fine-tunning of mRNA translation. Methylation is one of the most widespread post-transcriptional modifications in both eukaryotes and prokaryotes. HsWBSCR22 and ScBUD23 encodes a 18S rRNA methyltransferase that positively regulates cell growth by mediating ribosome maturation in human and yeast, respectively. However, presence and function of 18S rRNA methyltransferase in green algae are still elusive. Here, through bioinformatic analysis, we identified CrBUD23 as the human WBSCR22 homolog in genome of the green algae model organism Chlamydonomas reinhardtii. CrBUD23 was a conserved putative 18S rRNA methyltransferase widely exited in algae, plants, insects and mammalians. Transcription of CrBUD23 was upregulated by high light and down-regulated by low light, indicating its role in photosynthesis and energy metabolism. To characterize its biological function, coding sequence of CrBUD23 fused with a green fluorescence protein (GFP) tag was derived by 35S promoter and stably integrated into Chlamydomonas genome by glass bead-mediated transformation. Compared to C. reinhardtii wild type CC-5325, transgenic strains overexpressing CrBUD23 resulted in accelerated cell growth, thereby leading to elevated biomass, dry weight and protein content. Moreover, overexpression of CrBUD23 increased content of photosynthetic pigments but not elicit the activation of antioxidative enzymes, suggesting CrBUD23 favors growth and proliferation in the trade-off with stress responses. Bioinformatic analysis revealed the G1177 was the putative methylation site in 18S rRNA of C. reinhardtii CC-849. G1177 was conserved in other Chlamydonomas isolates, indicating the conserved methyltransferase activity of BUD23 proteins. In addition, CrTrm122, the homolog of BUD23 interactor Trm112, was found involved in responses to high light as same as CrBUD23. Taken together, our study revealed that cell growth, protein content and lutein accumulation of Chlamydomonas were positively regulated by the 18S rRNA methyltransferase CrBUD23, which could serve as a promising candidate for microalgae genetic engineering.
Collapse
Affiliation(s)
- Chenglong Liu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haoze Guo
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinmei Zhao
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bingxi Zou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ting Sun
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinwei Feng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiyong Zeng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueer Wen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Chen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sulin Lou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| | - Hui Li
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| |
Collapse
|
3
|
Xu H, Jiang C, Yao F, Liang H, Yan H, Chen D, Wu Y, Zhong L. Pan-Cancer Analysis Reveals the Relation between TRMT112 and Tumor Microenvironment. JOURNAL OF ONCOLOGY 2022; 2022:1445932. [PMID: 36081672 PMCID: PMC9448524 DOI: 10.1155/2022/1445932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Dysregulated epigenetic modifications play a critical role in cancer development where TRMT112 is a member of the transfer RNA (tRNA) methyltransferase family. Till now, no studies have revealed the linkage between TRMT112 expression and diverse types of tumors. Based on TCGA data, we first probed into the relation between TRMT112 and prognosis and the potential role of TRMT112 in tumor microenvironment across 33 types of tumor. TRMT112 presented with increased expression in most cancers, which was significantly prognostic. Furthermore, TRMT112 was associated with tumor-associated fibroblasts in a variety of cancers. Additionally, a positive relationship was identified between TRMT112 expression and multiple tumor-related immune infiltrations, such as dendritic cells, CD8+ T cells, macrophages, CD4+ T cells, neutrophils, and B cells in lung adenocarcinoma and breast invasive carcinoma. In summary, our results suggest that TRMT112 might be a potential prognostic predictor of cancers and involved in regulating multiple cancer-related immune responses to some extent.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Caihong Jiang
- Department of Pediatric Surgery, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Fusheng Yao
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Hong Liang
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Hong Yan
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Dangui Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Youzhi Wu
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| | - Long Zhong
- Department of Hematology, Anqing Municipal Hospital, Anqing Medical Center Affiliated to Anhui Medical University, Anqing, China
| |
Collapse
|
4
|
Biziaev NS, Shuvalov AV, Alkalaeva EZ. HEMK-Like Methyltransferases in the Regulation of Cellular Processes. Mol Biol 2022. [DOI: 10.1134/s0026893322030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
6
|
Black JJ, Johnson AW. Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast. RNA (NEW YORK, N.Y.) 2022; 28:371-389. [PMID: 34934010 PMCID: PMC8848936 DOI: 10.1261/rna.079025.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Georgeson J, Schwartz S. The ribosome epitranscriptome: inert-or a platform for functional plasticity? RNA (NEW YORK, N.Y.) 2021; 27:1293-1301. [PMID: 34312287 PMCID: PMC8522695 DOI: 10.1261/rna.078859.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.
Collapse
Affiliation(s)
- Joseph Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Black JJ, Johnson AW. Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis. Curr Genet 2021; 67:729-738. [PMID: 33844044 PMCID: PMC11979895 DOI: 10.1007/s00294-021-01187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1009215. [PMID: 33306676 PMCID: PMC7758049 DOI: 10.1371/journal.pgen.1009215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/23/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023] Open
Abstract
The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression. Ribosomes are the molecular machines that synthesize proteins and are composed of a large and a small subunit which carry out the essential functions of polypeptide synthesis and mRNA decoding, respectively. Ribosome production is tightly linked to cellular growth as cells must produce enough ribosomes to meet their protein needs. However, ribosome assembly is a metabolically expensive pathway that must be balanced with other cellular energy needs and regulated accordingly. In eukaryotes, the small subunit (SSU) Processome is a metastable intermediate that ultimately progresses towards a mature SSU through the release of biogenesis factors. The decision to progress the SSU Processome is thought to be an early checkpoint in the SSU assembly pathway, but insight into the mechanisms of progression is needed. Previous studies suggest that Bud23 plays an uncharacterized role during SSU Processome progression. Here, we used a genetic approach to understand its function and found that Bud23 is connected to a network of SSU Processome factors that stabilize the particle. Interestingly, two of these factors are enzymes that are needed for progression. We conclude that Bud23 promotes the release of factors surrounding its binding site to induce structural rearrangements during the progression of the SSU Processome.
Collapse
|
11
|
Kuznetsova SA, Petrukov KS, Pletnev FI, Sergiev PV, Dontsova OA. RNA (C5-cytosine) Methyltransferases. BIOCHEMISTRY (MOSCOW) 2019; 84:851-869. [PMID: 31522668 DOI: 10.1134/s0006297919080029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.
Collapse
Affiliation(s)
- S A Kuznetsova
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.
| | - K S Petrukov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - F I Pletnev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - P V Sergiev
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
| | - O A Dontsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
12
|
The Common Partner of Several Methyltransferases TRMT112 Regulates the Expression of N6AMT1 Isoforms in Mammalian Cells. Biomolecules 2019; 9:biom9090422. [PMID: 31466382 PMCID: PMC6769652 DOI: 10.3390/biom9090422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
Methylation is a widespread modification occurring in DNA, RNA and proteins. The N6AMT1 (HEMK2) protein has DNA N6-methyladenine as well as the protein glutamine and histone lysine methyltransferase activities. The human genome encodes two different isoforms of N6AMT1, the major isoform and the alternatively spliced isoform, where the substrate binding motif is missing. Several RNA methyltransferases involved in ribosome biogenesis, tRNA methylation and translation interact with the common partner, the TRMT112 protein. In this study, we show that TRMT112 regulates the expression of N6AMT1 isoforms in mammalian cells. Both isoforms are equally expressed on mRNA level, but only isoform 1 is detected on the protein level in human cells. We show that the alternatively spliced isoform is not able to interact with TRMT112 and when translated, is rapidly degraded from the cells. This suggests that TRMT112 is involved in cellular quality control ensuring that N6AMT1 isoform with missing substrate binding domain is eliminated from the cells. The down-regulation of TRMT112 does not affect the N6AMT1 protein levels in cells, suggesting that the two proteins of TRMT112 network, WBSCR22 and N6AMT1, are differently regulated by their common cofactor.
Collapse
|
13
|
Gregory B, Rahman N, Bommakanti A, Shamsuzzaman M, Thapa M, Lescure A, Zengel JM, Lindahl L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2:e201800150. [PMID: 30837296 PMCID: PMC6402506 DOI: 10.26508/lsa.201800150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation. In contrast, cessation of the 40S pathways does not prevent 60S accumulation, but does, however, lead to fragmentation of the 25S rRNA in 60S subunits and formation of a 55S ribosomal particle derived from the 60S. We also present evidence suggesting that these events occur post assembly and discuss the possibility that the turnover of subunits is due to vulnerability of free subunits not paired with the other subunit to form 80S ribosomes.
Collapse
MESH Headings
- Cell Survival/physiology
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Promoter Regions, Genetic
- Protein Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Brian Gregory
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Alana Lescure
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
14
|
Dixit S, Henderson JC, Alfonzo JD. Multi-Substrate Specificity and the Evolutionary Basis for Interdependence in tRNA Editing and Methylation Enzymes. Front Genet 2019; 10:104. [PMID: 30838029 PMCID: PMC6382703 DOI: 10.3389/fgene.2019.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.
Collapse
Affiliation(s)
| | | | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Vasilieva EN, Laptev IG, Sergiev PV, Dontsova OA. The Common Partner of Several Methyltransferases Modifying the Components of The Eukaryotic Translation Apparatus. Mol Biol 2018. [DOI: 10.1134/s0026893318060171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Bourgeois G, Marcoux J, Saliou JM, Cianférani S, Graille M. Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Res 2017; 45:1971-1982. [PMID: 27986851 PMCID: PMC5389515 DOI: 10.1093/nar/gkw1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional and post-translational modifications of factors involved in translation are very important for the control and accuracy of protein biosynthesis. Among these factors, tRNAs harbor the largest variety of grafted chemical structures, which participate in tRNA stability or mRNA decoding. Here, we focused on Trm112 protein, which associates with four different eukaryotic methyltransferases modifying tRNAs (Trm9 and Trm11) but also 18S-rRNA (Bud23) and translation termination factor eRF1 (Mtq2). In particular, we have investigated the role of Trm112 in the Trm11–Trm112 complex, which forms 2-methylguanosine at position 10 on several tRNAs and thereby is assumed to stabilize tRNA structure. We show that Trm112 is important for Trm11 enzymatic activity by influencing S-adenosyl-L-methionine binding and by contributing to tRNA binding. Using hydrogen-deuterium eXchange coupled to mass spectrometry, we obtained experimental evidences that the Trm11–Trm112 interaction relies on the same molecular bases as those described for other Trm112–methyltransferases complexes. Hence, all Trm112-dependent methyltransferases compete to interact with this partner.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Julien Marcoux
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
17
|
Kume K, Cantwell H, Neumann FR, Jones AW, Snijders AP, Nurse P. A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control. PLoS Genet 2017; 13:e1006767. [PMID: 28545058 PMCID: PMC5436639 DOI: 10.1371/journal.pgen.1006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/19/2017] [Indexed: 01/14/2023] Open
Abstract
How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants altered in their N/C ratio, and have found that defects in both nucleocytoplasmic mRNA transport and lipid synthesis alter the N/C ratio. Perturbing nuclear mRNA export results in accumulation of both mRNA and protein within the nucleus, and leads to an increase in the N/C ratio which is dependent on new membrane synthesis. Disruption of lipid synthesis dysregulates nuclear membrane growth and results in an enlarged N/C ratio. We propose that both properly regulated nucleocytoplasmic transport and nuclear membrane growth are central to the control of nuclear growth and size.
Collapse
Affiliation(s)
- Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helena Cantwell
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank R. Neumann
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Andrew W. Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York, United States of America
| |
Collapse
|
18
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
19
|
Bourgeois G, Létoquart J, van Tran N, Graille M. Trm112, a Protein Activator of Methyltransferases Modifying Actors of the Eukaryotic Translational Apparatus. Biomolecules 2017; 7:biom7010007. [PMID: 28134793 PMCID: PMC5372719 DOI: 10.3390/biom7010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional and post-translational modifications are very important for the control and optimal efficiency of messenger RNA (mRNA) translation. Among these, methylation is the most widespread modification, as it is found in all domains of life. These methyl groups can be grafted either on nucleic acids (transfer RNA (tRNA), ribosomal RNA (rRNA), mRNA, etc.) or on protein translation factors. This review focuses on Trm112, a small protein interacting with and activating at least four different eukaryotic methyltransferase (MTase) enzymes modifying factors involved in translation. The Trm112-Trm9 and Trm112-Trm11 complexes modify tRNAs, while the Trm112-Mtq2 complex targets translation termination factor eRF1, which is a tRNA mimic. The last complex formed between Trm112 and Bud23 proteins modifies 18S rRNA and participates in the 40S biogenesis pathway. In this review, we present the functions of these eukaryotic Trm112-MTase complexes, the molecular bases responsible for complex formation and substrate recognition, as well as their implications in human diseases. Moreover, as Trm112 orthologs are found in bacterial and archaeal genomes, the conservation of this Trm112 network beyond eukaryotic organisms is also discussed.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
- De Duve Institute, Université Catholique de Louvain, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| |
Collapse
|
20
|
Sharma S, Lafontaine DLJ. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci 2016; 40:560-575. [PMID: 26410597 DOI: 10.1016/j.tibs.2015.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023]
Abstract
Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly.
Collapse
Affiliation(s)
- Sunny Sharma
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium; Center for Microscopy and Molecular Imaging, BioPark campus, B-6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
21
|
Abstract
tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed.
Collapse
Affiliation(s)
- William E Swinehart
- a Center for RNA Biology and Department of Chemistry and Biochemistry ; Ohio State University ; Columbus , OH USA
| | | |
Collapse
|
22
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
23
|
Létoquart J, van Tran N, Caroline V, Aleksandrov A, Lazar N, van Tilbeurgh H, Liger D, Graille M. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure. Nucleic Acids Res 2015; 43:10989-1002. [PMID: 26438534 PMCID: PMC4678810 DOI: 10.1093/nar/gkv1009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/24/2015] [Indexed: 11/15/2022] Open
Abstract
Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Nhan van Tran
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Vonny Caroline
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Noureddine Lazar
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Herman van Tilbeurgh
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Dominique Liger
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| |
Collapse
|
24
|
Õunap K, Leetsi L, Matsoo M, Kurg R. The Stability of Ribosome Biogenesis Factor WBSCR22 Is Regulated by Interaction with TRMT112 via Ubiquitin-Proteasome Pathway. PLoS One 2015. [PMID: 26214185 PMCID: PMC4516353 DOI: 10.1371/journal.pone.0133841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human WBSCR22 protein is a 18S rRNA methyltransferase involved in pre-rRNA processing and ribosome 40S subunit biogenesis. Recent studies have shown that the protein function in ribosome synthesis is independent of its enzymatic activity. In this work, we have studied the WBSCR22 protein interaction partners by SILAC-coupled co-immunoprecipitation assay and identified TRMT112 as the interaction partner of WBSCR22. Knock-down of TRMT112 expression decreased the WBSCR22 protein level in mammalian cells, suggesting that the stability of WBSCR22 is regulated through the interaction with TRMT112. The localization of the TRMT112 protein is determined by WBSCR22, and the WBSCR22-TRMT112 complex is localized in the cell nucleus. We provide evidence that the interaction between WBSCR22/Bud23 and TRMT112/Trm112 is conserved between mammals and yeast, suggesting that the function of TRMT112 as a co-activator of methyltransferases is evolutionarily conserved. Finally, we show that the transiently expressed WBSCR22 protein is ubiquitinated and degraded through the proteasome pathway, revealing the tight control of the WBSCR22 protein level in the cells.
Collapse
Affiliation(s)
- Kadri Õunap
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Lilian Leetsi
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Maarja Matsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
25
|
Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DLJ. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 2015; 26:2080-95. [PMID: 25851604 PMCID: PMC4472018 DOI: 10.1091/mbc.e15-02-0073] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023] Open
Abstract
An evolutionarily conserved quality control in ribosome biogenesis reveals that two human rRNA base methyltransferases associated with cell differentiation and cancer but, surprisingly, not their RNA-modifying activity are required for small ribosomal subunit biogenesis. At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features.
Collapse
Affiliation(s)
- Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emilien Nicolas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emmeline Huvelle
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Valérie Heurgué-Hamard
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
26
|
Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015; 43:2242-58. [PMID: 25653167 PMCID: PMC4344512 DOI: 10.1093/nar/gkv075] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/05/2023] Open
Abstract
The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/chemistry
- Acetyltransferases/metabolism
- Amino Acid Sequence
- Cell Line
- Conserved Sequence
- Cytosine/metabolism
- Humans
- N-Terminal Acetyltransferase E/chemistry
- N-Terminal Acetyltransferase E/metabolism
- N-Terminal Acetyltransferases
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/metabolism
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Jean-Louis Langhendries
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Peter Watzinger
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
27
|
Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, Calle-Perez A, Pircher A, Gerstl MP, Pfeifenberger S, Brandl C, Sonntagbauer M, Kriegner A, Linder A, Weinhäusel A, Mohr T, Steiger M, Mattanovich D, Rinnerthaler M, Karl T, Sharma S, Entian KD, Kos M, Breitenbach M, Wilson IB, Polacek N, Grillari-Voglauer R, Breitenbach-Koller L, Grillari J. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun 2015; 6:6158. [PMID: 25635753 PMCID: PMC4317494 DOI: 10.1038/ncomms7158] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.
Collapse
Affiliation(s)
- Markus Schosserer
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Nadege Minois
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Tina B. Angerer
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Manuela Amring
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Hanna Dellago
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Muthgasse 18, 1190 Vienna, Austria
| | - Eva Harreither
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Alfonso Calle-Perez
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Pircher
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Matthias Peter Gerstl
- ACIB GmbH–Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Sigrid Pfeifenberger
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Clemens Brandl
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Markus Sonntagbauer
- Health & Environment Department, Molecular Medicine, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Albert Kriegner
- Health & Environment Department, Molecular Medicine, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Angela Linder
- Department of Chemistry, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Weinhäusel
- Health & Environment Department, Molecular Medicine, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Matthias Steiger
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH–Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH–Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Thomas Karl
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Sunny Sharma
- Department of Molecular Genetics & Cellular Microbiology, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Department of Molecular Genetics & Cellular Microbiology, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M, Germany
| | - Martin Kos
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Michael Breitenbach
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Iain B.H. Wilson
- Department of Chemistry, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Regina Grillari-Voglauer
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH–Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
- Evercyte GmbH, Muthgasse 18, 1190 Vienna, Austria
| | - Lore Breitenbach-Koller
- Department of Cell Biology, Division of Genetics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH–Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
- Evercyte GmbH, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
28
|
Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16. Mol Cell Biol 2014; 34:2208-20. [PMID: 24710271 DOI: 10.1128/mcb.01656-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The small ribosomal subunit assembles cotranscriptionally on the nascent primary transcript. Cleavage at site A2 liberates the pre-40S subunit. We previously identified Bud23 as a conserved eukaryotic methyltransferase that is required for efficient cleavage at A2. Here, we report that Bud23 physically and functionally interacts with the DEAH-box RNA helicase Ecm16 (also known as Dhr1). Ecm16 is also required for cleavage at A2. We identified mutations in ECM16 that suppressed the growth and A2 cleavage defects of a bud23Δ mutant. RNA helicases often require protein cofactors to provide substrate specificity. We used yeast (Saccharomyces cerevisiae) two-hybrid analysis to map the binding site of Bud23 on Ecm16. Despite the physical and functional interaction between these factors, mutations that disrupted the interaction, as assayed by two-hybrid analysis, did not display a growth defect. We previously identified mutations in UTP2 and UTP14 that suppressed bud23Δ. We suggest that a network of protein interactions may mask the loss of interaction that we have defined by two-hybrid analysis. A mutation in motif I of Ecm16 that is predicted to impair its ability to hydrolyze ATP led to accumulation of Bud23 in an ∼45S particle containing Ecm16. Thus, Bud23 enters the pre-40S pathway at the time of Ecm16 function.
Collapse
|
29
|
The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells. PLoS One 2013; 8:e75686. [PMID: 24086612 PMCID: PMC3781059 DOI: 10.1371/journal.pone.0075686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
The human WBSCR22 protein was previously shown to be up-regulated in invasive breast cancer and its ectopic expression enhances tumor cell survival in the vasculature. In the current study, we show that the WBSCR22 protein is important for cell growth. Knock-down of WBSCR22 with siRNA results in slower growth of WBSCR22-depleted cells. Treatment with siWBSCR22 causes defects in the processing of pre-rRNAs and reduces the level of free 40S ribosomal subunit, suggesting that WBSCR22 is involved in ribosome small subunit biosynthesis. The human WBSCR22 partially complements the growth of WBSCR22 yeast homologue, bud23 deletion mutant suggesting that the human WBSCR22 is a functional homologue of yeast Bud23. WBSCR22 is localized throughout the cell nucleus and is not stably associated with ribosomal subunits within the cell nucleus. We also show that the WBSCR22 protein level is decreased in lymphoblastoid cell lines derived from William-Beuren Syndrome (WBS) patients compared to healthy controls. Our data suggest that the WBSCR22 protein is a ribosome biogenesis factor involved in the biosynthesis of 40S ribosomal particles in mammalian cells.
Collapse
|
30
|
Sharma S, Yang J, Watzinger P, Kötter P, Entian KD. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res 2013; 41:9062-76. [PMID: 23913415 PMCID: PMC3799443 DOI: 10.1093/nar/gkt679] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Yeast 25S rRNA was reported to contain a single cytosine methylation (m5C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m5C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m5C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William's-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m5C residues. The loss of m5C2278 results in anisomycin hypersensitivity, whereas the loss of m5C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Molecular Genetics & Cellular Microbiology, Institute of Molecular Biosciences, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/M, Germany
| | | | | | | | | |
Collapse
|
31
|
Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V, Mullier R, Wacheul L, Lafontaine D. The Complexity of Human Ribosome Biogenesis Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors. Mol Cell 2013; 51:539-51. [DOI: 10.1016/j.molcel.2013.08.011] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
32
|
Sardana R, White JP, Johnson AW. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP. RNA (NEW YORK, N.Y.) 2013; 19:828-40. [PMID: 23604635 PMCID: PMC3683916 DOI: 10.1261/rna.037671.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/14/2013] [Indexed: 05/25/2023]
Abstract
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.
Collapse
|