1
|
Connors CQ, Mauro MS, Wiles JT, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the cell division plane. Mol Biol Cell 2024; 35:ar94. [PMID: 38696255 PMCID: PMC11244169 DOI: 10.1091/mbc.e24-02-0096-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024] Open
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.
Collapse
Affiliation(s)
- Caroline Q. Connors
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Michael S. Mauro
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - J. Tristian Wiles
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Sophia L. Martin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Benjamin Lacroix
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université de Montpellier, CNRS, Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 Montpellier, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Karen E. Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Timothy R. Davies
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
2
|
Rezig IM, Yaduma WG, McInerny CJ. Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins. J Fungi (Basel) 2024; 10:154. [PMID: 38392827 PMCID: PMC10890238 DOI: 10.3390/jof10020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.
Collapse
Affiliation(s)
- Imane M Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| | - Wandiahyel G Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
- Department of Chemistry, School of Sciences, Adamawa State College of Education, Hong 640001, Adamawa State, Nigeria
| | - Christopher J McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Hall AR, Choi YK, Im W, Vavylonis D. Anillin-related Mid1 as an adaptive and multimodal contractile ring anchoring protein: A simulation study. Structure 2024; 32:242-252.e2. [PMID: 38103546 PMCID: PMC10872332 DOI: 10.1016/j.str.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Cytokinesis of animal and fungi cells depends crucially on the anillin scaffold proteins. Fission yeast anillin-related Mid1 anchors cytokinetic ring precursor nodes to the membrane. However, it is unclear if both of its Pleckstrin Homology (PH) and C2 C-terminal domains bind to the membrane as monomers or dimers, and if one domain plays a dominant role. We studied Mid1 membrane binding with all-atom molecular dynamics near a membrane with yeast-like lipid composition. In simulations with the full C terminal region started away from the membrane, Mid1 binds through the disordered L3 loop of C2 in a vertical orientation, with the PH away from the membrane. However, a configuration with both C2 and PH initially bound to the membrane remains associated with the membrane. Simulations of C2-PH dimers show extensive asymmetric membrane contacts. These multiple modes of binding may reflect Mid1's multiple interactions with membranes, node proteins, and ability to sustain mechanical forces.
Collapse
Affiliation(s)
- Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, PA 18017, USA
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18017, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18017, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18017, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
4
|
Connors CQ, Mauro MS, Tristian Wiles J, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by restricting septin and anillin levels at the division plane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.566773. [PMID: 38014027 PMCID: PMC10680835 DOI: 10.1101/2023.11.17.566773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formin cyk-1 (ts) mutant C. elegans embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide without detectable F-actin at the division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septin UNC-59 and anillin ANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into cytokinetic regulation in other cell types, especially in stem cells with high potency.
Collapse
|
5
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Hall AR, Choi YK, Im W, Vavylonis D. Anillin Related Mid1 as an Adaptive and Multimodal Contractile Ring Anchoring Protein: A Simulation Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525865. [PMID: 36747616 PMCID: PMC9900988 DOI: 10.1101/2023.01.27.525865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The organization of the cytokinetic ring at the cell equator of dividing animal and fungi cells depends crucially on the anillin scaffold proteins. In fission yeast, anillin related Mid1 binds to the plasma membrane and helps anchor and organize a medial broad band of cytokinetic nodes, which are the precursors of the contractile ring. Similar to other anillins, Mid1 contains a C terminal globular domain with two potential regions for membrane binding, the Pleckstrin Homology (PH) and C2 domains, and an N terminal intrinsically disordered region that is strongly regulated by phosphorylation. Previous studies have shown that both PH and C2 domains can associate with the membrane, preferring phosphatidylinositol-(4,5)-bisphosphate (PIP 2 ) lipids. However, it is unclear if they can simultaneously bind to the membrane in a way that allows dimerization or oligomerization of Mid1, and if one domain plays a dominant role. To elucidate Mid1's membrane binding mechanism, we used the available structural information of the C terminal region of Mid1 in all-atom molecular dynamics (MD) near a membrane with a lipid composition based on experimental measurements (including PIP 2 lipids). The disordered L3 loop of C2, as well as the PH domain, separately bind the membrane through charged lipid contacts. In simulations with the full C terminal region started away from the membrane, Mid1 binds through the L3 loop and is stabilized in a vertical orientation with the PH domain away from the membrane. However, a configuration with both C2 and PH initially bound to the membrane remains associated with the membrane. These multiple modes of binding may reflect Mid1's multiple interactions with membranes and other node proteins, and ability to sustain mechanical forces.
Collapse
|
7
|
Bellingham-Johnstun K, Anders EC, Ravi J, Bruinsma C, Laplante C. Molecular organization of cytokinesis node predicts the constriction rate of the contractile ring. J Cell Biol 2021; 220:211718. [PMID: 33496728 PMCID: PMC7844425 DOI: 10.1083/jcb.202008032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The molecular organization of cytokinesis proteins governs contractile ring function. We used single molecule localization microscopy in live cells to elucidate the molecular organization of cytokinesis proteins and relate it to the constriction rate of the contractile ring. Wild-type fission yeast cells assemble contractile rings by the coalescence of cortical proteins complexes called nodes whereas cells without Anillin/Mid1p (Δmid1) lack visible nodes yet assemble contractile rings competent for constriction from the looping of strands. We leveraged the Δmid1 contractile ring assembly mechanism to determine how two distinct molecular organizations, nodes versus strands, can yield functional contractile rings. Contrary to previous interpretations, nodes assemble in Δmid1 cells. Our results suggest that Myo2p heads condense upon interaction with actin filaments and an excess number of Myo2p heads bound to actin filaments hinders constriction thus reducing the constriction rate. Our work establishes a predictive correlation between the molecular organization of nodes and the behavior of the contractile ring.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Erica Casey Anders
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - John Ravi
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Christina Bruinsma
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
8
|
Rezig IM, Yaduma WG, Gould GW, McInerny CJ. Anillin/Mid1p interacts with the ESCRT-associated protein Vps4p and mitotic kinases to regulate cytokinesis in fission yeast. Cell Cycle 2021; 20:1845-1860. [PMID: 34382912 PMCID: PMC8525990 DOI: 10.1080/15384101.2021.1962637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cytokinesis is the final stage of the cell cycle which separates cellular constituents to produce two daughter cells. Using the fission yeast Schizosaccharomyces pombe we have investigated the role of various classes of proteins involved in this process. Central to these is anillin/Mid1p which forms a ring-like structure at the cell equator that predicts the site of cell separation through septation in fission yeast. Here we demonstrate a direct physical interaction between Mid1p and the endosomal sorting complex required for transport (ESCRT)-associated protein Vps4p, a genetic interaction of the mid1 and vps4 genes essential for cell viability, and a requirement of Vps4p for the correct cellular localization of Mid1p. Furthermore, we show that Mid1p is phosphorylated by aurora kinase, a genetic interaction of the mid1 and the aurora kinase ark1 genes is essential for cell viability, and that Ark1p is also required for the correct cellular localization of Mid1p. We mapped the sites of phosphorylation of Mid1p by human aurora A and the polo kinase Plk1 and assessed their importance in fission yeast by mutational analysis. Such analysis revealed serine residues S332, S523 and S531 to be required for Mid1p function and its interaction with Vps4p, Ark1p and Plo1p. Combined these data suggest a physical interaction between Mid1p and Vps4p important for cytokinesis, and identify phosphorylation of Mid1p by aurora and polo kinases as being significant for this process.
Collapse
Affiliation(s)
- Imane M Rezig
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wandiahyel G Yaduma
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christopher J McInerny
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Magliozzi JO, Sears J, Cressey L, Brady M, Opalko HE, Kettenbach AN, Moseley JB. Fission yeast Pak1 phosphorylates anillin-like Mid1 for spatial control of cytokinesis. J Cell Biol 2021; 219:151784. [PMID: 32421151 PMCID: PMC7401808 DOI: 10.1083/jcb.201908017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/09/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants. Through a phosphoproteomic screen, we identified novel Pak1 substrates that function in polarized growth and cytokinesis. For cytokinesis, we found that Pak1 regulates the localization of its substrates Mid1 and Cdc15 to the CAR. Mechanistically, Pak1 phosphorylates the Mid1 N-terminus to promote its association with cortical nodes that act as CAR precursors. Defects in Pak1-Mid1 signaling lead to misplaced and defective division planes, but these phenotypes can be rescued by synthetic tethering of Mid1 to cortical nodes. Our work defines a new signaling mechanism driven by a cell polarity kinase that promotes CAR assembly in the correct time and place.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Jack Sears
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Marielle Brady
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Hannah E Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
10
|
Magliozzi JO, Moseley JB. Connecting cell polarity signals to the cytokinetic machinery in yeast and metazoan cells. Cell Cycle 2021; 20:1-10. [PMID: 33397181 DOI: 10.1080/15384101.2020.1864941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types. Following polarized growth during interphase, dividing cells assemble a cytokinetic ring containing the protein machinery to constrict and separate daughter cells. Here, we discuss how cell polarity signaling pathways act on cytokinesis, with a focus on direct regulation of the contractile actomyosin ring (CAR). Recent studies have exploited phosphoproteomics to identify new connections between cell polarity kinases and CAR proteins. Existing evidence suggests that some polarity kinases guide the local organization of CAR proteins and structures while also contributing to global organization of the division plane within a cell. We provide several examples of this regulation from budding yeast, fission yeast, and metazoan cells. In some cases, kinase-substrate connections point to conserved processes in these different organisms. We point to several examples where future work can indicate the degree of conservation and divergence in the cell division process of these different organisms.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Adeli Koudehi M, Rutkowski DM, Vavylonis D. Organization of associating or crosslinked actin filaments in confinement. Cytoskeleton (Hoboken) 2019; 76:532-548. [PMID: 31525281 DOI: 10.1002/cm.21565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
A key factor of actin cytoskeleton organization in cells is the interplay between the dynamical properties of actin filaments and cell geometry, which restricts, confines and directs their orientation. Crosslinking interactions among actin filaments, together with geometrical cues and regulatory proteins can give rise to contractile rings in dividing cells and actin rings in neurons. Motivated by recent in vitro experiments, in this work we performed computer simulations to study basic aspects of the interplay between confinement and attractive interactions between actin filaments. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. We model crosslinking, or attraction through the depletion interaction, implicitly as an attractive short-range potential between filament beads. In confining geometries smaller than the persistence length of actin filaments, we show rings can form by curving of filaments of length comparable to, or longer than the confinement diameter. Rings form for optimal ranges of attractive interactions that exist in between open bundles, irregular loops, aggregated, and unbundled morphologies. The probability of ring formation is promoted by attraction to the confining sphere boundary and decreases for large radii and initial monomer concentrations, in agreement with prior experimental data. The model reproduces ring formation along the flat plane of oblate ellipsoids.
Collapse
|
12
|
Facchetti G, Knapp B, Chang F, Howard M. Reassessment of the Basis of Cell Size Control Based on Analysis of Cell-to-Cell Variability. Biophys J 2019; 117:1728-1738. [PMID: 31630810 PMCID: PMC6838950 DOI: 10.1016/j.bpj.2019.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/19/2019] [Accepted: 09/23/2019] [Indexed: 11/12/2022] Open
Abstract
Fundamental mechanisms governing cell size control and homeostasis are still poorly understood. The relationship between sizes at division and birth in single cells is used as a metric to categorize the basis of size homeostasis. Cells dividing at a fixed size regardless of birth size (sizer) are expected to show a division-birth slope of zero, whereas cells dividing after growing for a fixed size increment (adder) have an expected slope of +1. These two theoretical values are, however, rarely experimentally observed. For example, rod-shaped fission yeast Schizosaccharomyces pombe cells, which divide at a fixed surface area, exhibit a division-birth slope for cell lengths of 0.25 ± 0.02, significantly different from the expected sizer value of zero. Here, we investigate possible reasons for this discrepancy by developing a mathematical model of sizer control including the relevant sources of variation. Our results support pure sizer control and show that deviation from zero slope is exaggerated by measurement of an inappropriate geometrical quantity (e.g., length instead of area), combined with cell-to-cell radius variability. The model predicts that mutants with greater errors in size sensing or septum positioning paradoxically appear to behave as better sizers. Furthermore, accounting for cell width variability, we show that pure sizer control can in some circumstances reproduce the apparent adder behavior observed in Escherichia coli. These findings demonstrate that analysis of geometric variation can lead to new insights into cell size control.
Collapse
Affiliation(s)
- Giuseppe Facchetti
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom; Department of Systems Biology, University of Surrey, Guildford, United Kingdom.
| | - Benjamin Knapp
- Department of Cell and Tissue Biology, University of California-San Francisco, San Francisco, California; Biophysics Program, Stanford University, Stanford, California
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California-San Francisco, San Francisco, California
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
13
|
Pollard TD. Cell Motility and Cytokinesis: From Mysteries to Molecular Mechanisms in Five Decades. Annu Rev Cell Dev Biol 2019; 35:1-28. [PMID: 31394047 DOI: 10.1146/annurev-cellbio-100818-125427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular, Cellular and Developmental Biology; Molecular Biophysics and Biochemistry; and Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
| |
Collapse
|
14
|
Chatterjee M, Pollard TD. The Functionally Important N-Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry 2019; 58:3031-3041. [PMID: 31243991 DOI: 10.1021/acs.biochem.9b00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Division of fungal and animal cells depends on scaffold proteins called anillins. Cytokinesis by the fission yeast Schizosaccharomyces pombe is compromised by the loss of anillin Mid1p (Mid1, UniProtKB P78953 ), because cytokinesis organizing centers, called nodes, are misplaced and fail to acquire myosin-II, so they assemble slowly into abnormal contractile rings. The C-terminal half of Mid1p consists of lipid binding C2 and PH domains, but the N-terminal half (Mid1p-N452) performs most of the functions of the full-length protein. Little is known about the structure of the N-terminal half of Mid1p, so we investigated its physical properties using structure prediction tools, spectroscopic techniques, and hydrodynamic measurements. The data indicate that Mid1p-N452 is intrinsically disordered but moderately compact. Recombinant Mid1p-N452 purified from insect cells was phosphorylated, which weakens its tendency to aggregate. Purified Mid1p-N452 demixes into liquid droplets at concentrations far below its concentration in nodes. These physical properties are appropriate for scaffolding other proteins in nodes.
Collapse
|
15
|
Facchetti G, Knapp B, Flor-Parra I, Chang F, Howard M. Reprogramming Cdr2-Dependent Geometry-Based Cell Size Control in Fission Yeast. Curr Biol 2019; 29:350-358.e4. [PMID: 30639107 PMCID: PMC6345630 DOI: 10.1016/j.cub.2018.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
How cell size is determined and maintained remains unclear, even in simple model organisms. In proliferating cells, cell size is regulated by coordinating growth and division through sizer, adder, or timer mechanisms or through some combination [1, 2]. Currently, the best-characterized example of sizer behavior is in fission yeast, Schizosaccharomyces pombe, which enters mitosis at a minimal cell size threshold. The peripheral membrane kinase Cdr2 localizes in clusters (nodes) on the medial plasma membrane and promotes mitotic entry [3]. Here, we show that the Cdr2 nodal density, which scales with cell size, is used by the cell to sense and control its size. By analyzing cells of different widths, we first show that cdr2+ cells divide at a fixed cell surface area. However, division in the cdr2Δ mutant is more closely specified by cell volume, suggesting that Cdr2 is essential for area sensing and supporting the existence of a Cdr2-independent secondary sizer mechanism more closely based on volume. To investigate how Cdr2 nodes may sense area, we derive a minimal mathematical model that incorporates the cytoplasmic kinase Ssp1 as a Cdr2 activator. The model predicts that a cdr2 mutant in an Ssp1 phosphorylation site (cdr2-T166A) [4] should form nodes whose density registers cell length. We confirm this prediction experimentally and find that thin cells now follow this new scaling by dividing at constant length instead of area. This work supports the role of Cdr2 as a sizer factor and highlights the importance of studying geometrical aspects of size control.
Collapse
Affiliation(s)
| | - Benjamin Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucia, Seville, Spain
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
16
|
Laplante C. Building the contractile ring from the ground up: a lesson in perseverance and scientific creativity. Biophys Rev 2018; 10:1491-1497. [PMID: 30448942 DOI: 10.1007/s12551-018-0482-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/08/2018] [Indexed: 11/28/2022] Open
Abstract
This contribution to the Festschrift for Professor Thomas (Tom) D. Pollard focuses on his work on the elucidation of the protein organization within the cytokinetic nodes, protein assemblies, precursors to the contractile ring. In particular, this work highlights recent discoveries in the molecular organization of the proteins that make the contractile machine in fission yeast using advanced microscopy techniques. One of the main aspects of Tom's research philosophy that marked my career as one of his trainees is his embrace of interdisciplinary approaches to research. The cost of interdisciplinary research is to be willing to step out of our technical comfort zone to learn a new set of tools. The payoff of interdisciplinary research is the expansion our realm of possibilities by bringing new creative tools and ideas to push our research program forward. The rewarding outcomes of this work under Tom's mentorship were the molecular model of the cytokinetic node and the development of new techniques to unravel the structure of multi-protein complexes in live cells. Together, these findings open a new set of questions about the mechanism of cytokinesis and provide creative tools to address them.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1051 William Moore Drive, Office: RB 254, Raleigh, NC, 27606, USA.
| |
Collapse
|
17
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Friend JE, Sayyad WA, Arasada R, McCormick CD, Heuser JE, Pollard TD. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm. Cytoskeleton (Hoboken) 2017; 75:164-173. [PMID: 29205883 DOI: 10.1002/cm.21425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Myosin-II is required for the assembly and constriction of cytokinetic contractile rings in fungi and animals. We used electron microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS) to characterize the physical properties of Myo2 from fission yeast Schizosaccharomyces pombe. By electron microscopy, Myo2 has two heads and a coiled-coiled tail like myosin-II from other species. The first 65 nm of the tail is a stiff rod, followed by a flexible, less-ordered region up to 30 nm long. Myo2 sediments as a 7 S molecule in high salt, but aggregates rather than forming minifilaments at lower salt concentrations; this is unaffected by heavy chain phosphorylation. We used FRAP and FCS to observe the dynamics of Myo2 in live S. pombe cells and in cell extracts at different salt concentrations; both show that Myo2 with an N-terminal mEGFP tag has a diffusion coefficient of ∼ 3 µm2 s-1 in the cytoplasm of live cells during interphase and mitosis. Photon counting histogram analysis of the FCS data confirmed that Myo2 diffuses as doubled-headed molecules in the cytoplasm. FCS measurements on diluted cell extracts showed that mEGFP-Myo2 has a diffusion coefficient of ∼ 30 µm2 s-1 in 50 to 400 mM KCl concentrations.
Collapse
Affiliation(s)
- Janice E Friend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Wasim A Sayyad
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Rajesh Arasada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Chad D McCormick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-1855
| | - John E Heuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
19
|
Akamatsu M, Lin Y, Bewersdorf J, Pollard TD. Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy. Mol Biol Cell 2017; 28:3203-3214. [PMID: 28539404 PMCID: PMC5687023 DOI: 10.1091/mbc.e16-07-0522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
We used quantitative confocal microscopy and FPALM superresolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes-multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle, seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis, the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases-a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520-8103
| | - Yu Lin
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520-8103.,Department of Cell Biology, Yale University, New Haven, CT 06520-8103.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520-8103
| | - Joerg Bewersdorf
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520-8103.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520-8103
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103 .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103.,Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
20
|
Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. Proc Natl Acad Sci U S A 2016; 113:E5876-E5885. [PMID: 27647921 PMCID: PMC5056082 DOI: 10.1073/pnas.1608252113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring.
Collapse
|
21
|
Wollrab V, Caballero D, Thiagarajan R, Riveline D. Ordering Single Cells and Single Embryos in 3D Confinement: A New Device for High Content Screening. J Vis Exp 2016. [PMID: 27684088 DOI: 10.3791/51880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Biological cells are usually observed on flat (2D) surfaces. This condition is not physiological, and phenotypes and shapes are highly variable. Screening based on cells in such environments have therefore serious limitations: cell organelles show extreme phenotypes, cell morphologies and sizes are heterogeneous and/or specific cell organelles cannot be properly visualized. In addition, cells in vivo are located in a 3D environment; in this situation, cells show different phenotypes mainly because of their interaction with the surrounding extracellular matrix of the tissue. In order to standardize and generate order of single cells in a physiologically-relevant 3D environment for cell-based assays, we report here the microfabrication and applications of a device for in vitro 3D cell culture. This device consists of a 2D array of microcavities (typically 10(5) cavities/cm(2)), each filled with single cells or embryos. Cell position, shape, polarity and internal cell organization become then normalized showing a 3D architecture. We used replica molding to pattern an array of microcavities, 'eggcups', onto a thin polydimethylsiloxane (PDMS) layer adhered on a coverslip. Cavities were covered with fibronectin to facilitate adhesion. Cells were inserted by centrifugation. Filling percentage was optimized for each system allowing up to 80%. Cells and embryos viability was confirmed. We applied this methodology for the visualization of cellular organelles, such as nucleus and Golgi apparatus, and to study active processes, such as the closure of the cytokinetic ring during cell mitosis. This device allowed the identification of new features, such as periodic accumulations and inhomogeneities of myosin and actin during the cytokinetic ring closure and compacted phenotypes for Golgi and nucleus alignment. We characterized the method for mammalian cells, fission yeast, budding yeast, C. elegans with specific adaptation in each case. Finally, the characteristics of this device make it particularly interesting for drug screening assays and personalized medicine.
Collapse
Affiliation(s)
- Viktoria Wollrab
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS and Université de Strasbourg; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS and Université de Strasbourg
| | - David Caballero
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS and Université de Strasbourg; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS and Université de Strasbourg
| | - Raghavan Thiagarajan
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS and Université de Strasbourg; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS and Université de Strasbourg
| | - Daniel Riveline
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS and Université de Strasbourg; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS and Université de Strasbourg;
| |
Collapse
|
22
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
23
|
Yasuda T, Takaine M, Numata O, Nakano K. Anillin-related protein Mid1 regulates timely formation of the contractile ring in the fission yeastSchizosaccharomyces japonicus. Genes Cells 2016; 21:594-607. [DOI: 10.1111/gtc.12368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Tsuyoshi Yasuda
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Masak Takaine
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Osamu Numata
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Kentaro Nakano
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
24
|
Pu KM, Akamatsu M, Pollard TD. The septation initiation network controls the assembly of nodes containing Cdr2p for cytokinesis in fission yeast. J Cell Sci 2016; 128:441-6. [PMID: 25501814 DOI: 10.1242/jcs.160077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, cortical protein structures called interphase nodes help to prepare the cell for cytokinesis by positioning precursors of the cytokinetic contractile ring, and the septation initiation network (SIN) regulates the onset of cytokinesis and septum formation. Previous work has noted that one type of interphase node disappears during mitosis providing SIN activity is high. Here, we used time-lapse fluorescence microscopy to provide evidence that SIN activity is necessary and sufficient to disperse the type 1 node proteins Cdr2p and Mid1p into the cytoplasm, so these nodes assemble only during interphase through early mitosis when SIN activity is low. Activating the SIN in interphase cells dispersed Cdr2p and anillin Mid1p from type 1 nodes a few min after the SIN kinase Cdc7p–GFP accumulated at spindle pole bodies. If the SIN was then turned off in interphase cells, Cdr2p and Mid1p reappeared in nodes in parallel with the decline in SIN activity. Hyperactivating SIN during mitosis dispersed type 1 nodes earlier than normal, and prolonged SIN activation prevented nodes from reforming at the end of mitosis.
Collapse
|
25
|
Gould GW. Animal cell cytokinesis: The role of dynamic changes in the plasma membrane proteome and lipidome. Semin Cell Dev Biol 2015; 53:64-73. [PMID: 26721337 DOI: 10.1016/j.semcdb.2015.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
In animal cells, cytokinesis is characterised by the formation of the mitotic spindle that signals the assembly of an actomyosin ring between the spindle poles. Contraction of this ring drives ingression of the cleavage furrow, and culminates in the formation of a thin intercellular bridge between the daughter cells. At the centre of this bridge is the midbody, which is thought both to provide a site of attachment for the plasma membrane furrow and act as foci for the spatial and temporal control mechanisms that drive abscission. This review will focus upon recent studies that offer new insight into these events, in particular studies that elaborate on the mechanism of attachment between the furrow plasma membrane and the underlying cytoskeleton, and how dynamic changes in membrane composition might underpin key aspects of cytokinesis.
Collapse
Affiliation(s)
- Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
26
|
Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. J Cell Biol 2015; 211:653-68. [PMID: 26553932 PMCID: PMC4639868 DOI: 10.1083/jcb.201504073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
Collapse
Affiliation(s)
- Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Willet AH, McDonald NA, Gould KL. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr Opin Microbiol 2015; 28:46-52. [PMID: 26340438 DOI: 10.1016/j.mib.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 01/14/2023]
Abstract
The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
28
|
Laplante C, Berro J, Karatekin E, Hernandez-Leyva A, Lee R, Pollard TD. Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring. Curr Biol 2015; 25:1955-65. [PMID: 26144970 DOI: 10.1016/j.cub.2015.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 05/16/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell-cycle time, -10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy-chain gene (myo2-E1) and deletion mutations of the other myosin heavy-chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% that of normal in cells relying on Myp2 alone and 25% that of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis, with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Institut des Sciences Biologiques, Centre National de la Recherche Scientifique (CNRS), Délégation Paris Michel-Ange, 3 rue Michel-Ange, 75794 Paris Cedex 16, France
| | - Ariel Hernandez-Leyva
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Rachel Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Takaine M, Numata O, Nakano K. An actin-myosin-II interaction is involved in maintaining the contractile ring in fission yeast. J Cell Sci 2015; 128:2903-18. [PMID: 26092938 DOI: 10.1242/jcs.171264] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 01/26/2023] Open
Abstract
The actomyosin-based contractile ring, which assembles at the cell equator, maintains its circularity during cytokinesis in many eukaryotic cells, ensuring its efficient constriction. Although consistent maintenance of the ring is one of the mechanisms underpinning cytokinesis, it has not yet been fully addressed. We here investigated the roles of fission yeast myosin-II proteins [Myo2 and Myo3 (also known as Myp2)] in ring maintenance during cytokinesis, with a focus on Myo3. A site-directed mutational analysis showed that the motor properties of Myo3 were involved in its accumulation in the contractile ring. The assembled ring was often deformed and not properly maintained under conditions in which the activities of myosin-II proteins localizing to the contractile ring were decreased, leading to inefficient cell division. Moreover, Myo3 appeared to form motile clusters on the ring. We propose that large assemblies of myosin-II proteins consolidate the contractile ring by continuously binding to F-actin in the ring, thereby contributing to its maintenance.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
30
|
Sun L, Guan R, Lee IJ, Liu Y, Chen M, Wang J, Wu JQ, Chen Z. Mechanistic insights into the anchorage of the contractile ring by anillin and Mid1. Dev Cell 2015; 33:413-26. [PMID: 25959226 DOI: 10.1016/j.devcel.2015.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
Abstract
Anillins and Mid1 are scaffold proteins that play key roles in anchorage of the contractile ring at the cell equator during cytokinesis in animals and fungi, respectively. Here, we report crystal structures and functional analysis of human anillin and S. pombe Mid1. The combined data show anillin contains a cryptic C2 domain and a Rho-binding domain. Together with the tethering PH domain, three membrane-associating elements synergistically bind to RhoA and phospholipids to anchor anillin at the cleavage furrow. Surprisingly, Mid1 also binds to the membrane through a cryptic C2 domain. Dimerization of Mid1 leads to high affinity and preference for PI(4,5)P2, which stably anchors Mid1 at the division plane, bypassing the requirement for Rho GTPase. These findings uncover the unexpected general machinery and the divergent regulatory logics for the anchorage of the contractile ring through the anillin/Mid1 family proteins from yeast to humans.
Collapse
Affiliation(s)
- Lingfei Sun
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ruifang Guan
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Life Science, Tsinghua University, Beijing 100084, China
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mengran Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jiawei Wang
- School of Life Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Abstract
Cytokinesis, the terminal event in the canonical cell cycle, physically separates daughter cells following mitosis. For cleavage to occur in many eukaryotes, a cytokinetic ring must assemble and constrict between divided genomes. Although dozens of different molecules localize to and participate within the cytokinetic ring, the core machinery comprises linear actin filaments. Accordingly, formins, which nucleate and elongate F-actin (filamentous actin) for the cytokinetic ring, are required for cytokinesis in diverse species. In the present article, we discuss specific modes of formin-based actin regulation during cell division and highlight emerging mechanisms and questions on this topic.
Collapse
|
32
|
Akamatsu M, Berro J, Pu KM, Tebbs IR, Pollard TD. Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase. ACTA ACUST UNITED AC 2014; 204:977-88. [PMID: 24637325 PMCID: PMC3998791 DOI: 10.1083/jcb.201307174] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two distinct classes of cortical nodes form separately during interphase in fission yeast cells and then merge at the cell equator by a diffuse-and-capture mechanism to prepare nodes to form the contractile ring for cytokinesis. We investigated the assembly of cortical nodes that generate the cytokinetic contractile ring in fission yeast. Observations of cells expressing fluorescent fusion proteins revealed two types of interphase nodes. Type 1 nodes containing kinase Cdr1p, kinase Cdr2p, and anillin Mid1p form in the cortex around the nucleus early in G2. Type 2 nodes with protein Blt1p, guanosine triphosphate exchange factor Gef2p, and kinesin Klp8p emerge from contractile ring remnants. Quantitative measurements and computer simulations showed that these two types of nodes come together by a diffuse-and-capture mechanism: type 2 nodes diffuse to the equator and are captured by stationary type 1 nodes. During mitosis, cytokinetic nodes with Mid1p and all of the type 2 node markers incorporate into the contractile ring, whereas type 1 nodes with Cdr1p and Cdr2p follow the separating nuclei before dispersing into the cytoplasm, dependent on septation initiation network signaling. The two types of interphase nodes follow parallel branches of the pathway to prepare nodes for cytokinesis.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular, Cellular, and Developmental Biology, 2 Department of Molecular Biophysics and Biochemistry, 3 Nanobiology Institute, and 4 Department of Cell Biology, Yale University, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
33
|
Goss JW, Kim S, Bledsoe H, Pollard TD. Characterization of the roles of Blt1p in fission yeast cytokinesis. Mol Biol Cell 2014; 25:1946-57. [PMID: 24790095 PMCID: PMC4072569 DOI: 10.1091/mbc.e13-06-0300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes-precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.
Collapse
Affiliation(s)
- John W Goss
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Sunhee Kim
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Hannah Bledsoe
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
34
|
Coffman VC, Sees JA, Kovar DR, Wu JQ. The formins Cdc12 and For3 cooperate during contractile ring assembly in cytokinesis. ACTA ACUST UNITED AC 2013; 203:101-14. [PMID: 24127216 PMCID: PMC3798249 DOI: 10.1083/jcb.201305022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both de novo-assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics and 2 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | |
Collapse
|
35
|
Abstract
In Schizosaccharomyces pombe, the septation initiation network (SIN) controls cytokinetic ring (CR) formation, maintenance, and constriction. Bohnert et al. identify Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation allows multimerization of a domain that confers F-actin bundling activity, which leads to persistent Cdc12 clustering, causing CRs to collapse when cytokinesis is delayed. These findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division. Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic formin Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR assembly in the absence of anillin-like Mid1 and causes CRs to collapse when cytokinesis is delayed. Molecularly, Sid2 phosphorylation of Cdc12 abrogates multimerization of a previously unrecognized Cdc12 domain that confers F-actin bundling activity. Taken together, our findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division.
Collapse
|
36
|
Zhu YH, Ye Y, Wu Z, Wu JQ. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis. Mol Biol Cell 2013; 24:3187-204. [PMID: 23966468 PMCID: PMC3806657 DOI: 10.1091/mbc.e13-06-0301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous results showed that putative Rho-GEF Gef2 regulates division-site positioning during early cytokinesis in fission yeast. Here Nod1 is identified as a binding partner of Gef2. The two proteins form a complex to regulate division-site positioning and contractile-ring maintenance. In addition, Gef2 binds to GTPases Rho1, Rho4, and Rho5 in vitro. Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | |
Collapse
|
37
|
Tebbs IR, Pollard TD. Separate roles of IQGAP Rng2p in forming and constricting the Schizosaccharomyces pombe cytokinetic contractile ring. Mol Biol Cell 2013; 24:1904-17. [PMID: 23615450 PMCID: PMC3681696 DOI: 10.1091/mbc.e12-10-0775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments, as well as for ring constriction. Systematic analysis of domain deletion mutants establishes how the four domains of Rng2p contribute to cytokinesis. Eukaryotic cells require IQGAP family multidomain adapter proteins for cytokinesis, but many questions remain about how IQGAPs contribute to the process. Here we show that fission yeast IQGAP Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments. Our work adds to previous studies suggesting a role for Rng2p in node and ring formation. We demonstrate that Rng2p is also required for normal ring constriction and septum formation. Systematic analysis of domain-deletion mutants established how the four domains of Rng2p contribute to cytokinesis. Contrary to a previous report, the actin-binding calponin homology domain of Rng2p is not required for viability, ring formation, or ring constriction. The IQ motifs are not required for ring formation but are important for ring constriction and septum formation. The GTPase-activating protein (GAP)–related domain is required for node-based ring formation. The Rng2p C-terminal domain is the only domain essential for viability. Our studies identified several distinct functions of Rng2 at multiple stages of cytokinesis.
Collapse
Affiliation(s)
- Irene R Tebbs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
38
|
Jourdain I, Brzezińska EA, Toda T. Fission yeast Nod1 is a component of cortical nodes involved in cell size control and division site placement. PLoS One 2013; 8:e54142. [PMID: 23349808 PMCID: PMC3547912 DOI: 10.1371/journal.pone.0054142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cytokinesis contractile actomyosin ring (CAR). Here we describe a new component of the interphase nodes and cytokinesis rings, which we named Nod1. Consistent with its role in cell size control at division, nod1Δ cells were elongated and epistatic with regulators of Wee1. Through biochemical and localisation studies, we placed Nod1 in a complex with the Rho-guanine nucleotide exchange factor Gef2. Nod1 and Gef2 mutually recruited each other in nodes and Nod1 also assembles Gef2 in rings. Like gef2Δ, nod1Δ cells showed a mild displacement of their division plane and this phenotype was severely exacerbated when the parallel Polo kinase pathway was also compromised. We conclude that Nod1 specifies the division site by localising Gef2 to the mitotic cell middle. Previous work showed that Gef2 in turn anchors factors that control the spatio-temporal recruitment of the actin nucleation machinery. It is believed that the actin filaments originated from the nodes pull nodes together into a single contractile ring. Surprisingly however, we found that node proteins could form pre-ring helical filaments in a cdc12-112 mutant in which nucleation of the actin ring is impaired. Furthermore, the deletion of either nod1 or gef2 created an un-expected situation where different ring components were recruited sequentially rather than simultaneously. At later stages of cytokinesis, these various rings appeared inter-fitted rather than merged. This study brings a new slant to the understanding of CAR assembly and function.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Elspeth A. Brzezińska
- Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Takashi Toda
- Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
39
|
Saha S, Pollard TD. Characterization of structural and functional domains of the anillin-related protein Mid1p that contribute to cytokinesis in fission yeast. Mol Biol Cell 2012; 23:3993-4007. [PMID: 22918954 PMCID: PMC3469515 DOI: 10.1091/mbc.e12-07-0536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission yeast cells depend on the anillin-related protein Mid1p for reliable cytokinesis. Insolubility limits the purification of full-length Mid1p for biophysical analysis, and lack of knowledge about the structural domains of Mid1p limits functional analysis. We addressed these limitations by identifying in a bacterial expression screen of random Mid1p fragments five soluble segments that can be purified and one insoluble segment. Using complementation experiments in Δmid1 cells, we tested the biological functions of these six putative domains that account for full-length Mid1p. The N-terminal domain (residues 1-149) is essential for correct positioning and orientation of septa. The third domain (residues 309-452) allows the construct composed of the first three domains (residues 1-452) to form hydrodynamically well-behaved octamers. Constructs consisting of residues 1-452 or 1-578 carry out most functions of full-length Mid1p, including concentration at the equatorial cortex in nodes that accumulate myosin-II and other contractile ring proteins during mitosis. However, cells depending on these constructs without the insoluble domain (residues 579-797) form equatorially located rings slowly from strands rather than by direct condensation of nodes. We conclude that residues 1-578 assemble node components myosin-II, Rng2p, and Cdc15p, and the insoluble domain facilitates the normal, efficient condensation of nodes into rings.
Collapse
Affiliation(s)
- Shambaditya Saha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|