1
|
Parmar BS, Kieswetter A, Geens E, Vandewyer E, Ludwig C, Temmerman L. azyx-1 is a new gene that overlaps with zyxin and affects its translation in C. elegans, impacting muscular integrity and locomotion. PLoS Biol 2023; 21:e3002300. [PMID: 37713439 PMCID: PMC10575671 DOI: 10.1371/journal.pbio.3002300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Overlapping genes are widely prevalent; however, their expression and consequences are poorly understood. Here, we describe and functionally characterize a novel zyx-1 overlapping gene, azyx-1, with distinct regulatory functions in Caenorhabditis elegans. We observed conservation of alternative open reading frames (ORFs) overlapping the 5' region of zyxin family members in several animal species, and find shared sites of azyx-1 and zyxin proteoform expression in C. elegans. In line with a standard ribosome scanning model, our results support cis regulation of zyx-1 long isoform(s) by upstream initiating azyx-1a. Moreover, we report on a rare observation of trans regulation of zyx-1 by azyx-1, with evidence of increased ZYX-1 upon azyx-1 overexpression. Our results suggest a dual role for azyx-1 in influencing zyx-1 proteoform heterogeneity and highlight its impact on C. elegans muscular integrity and locomotion.
Collapse
Affiliation(s)
- Bhavesh S. Parmar
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, München, Germany
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
2
|
Wei Z, Xia K, Zhou B, Zheng D, Guo W. Zyxin Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma via Rap1-Mediated Inhibition of the MEK/ERK Signaling Pathway. Biomedicines 2023; 11:2314. [PMID: 37626810 PMCID: PMC10452081 DOI: 10.3390/biomedicines11082314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Zyxin (ZYX) is an actin-interacting protein with unknown biological functions in patients with osteosarcoma. This research sought to understand how ZYX affects the biological behavior of osteosarcoma cells and to identify the associated mechanism. Firstly, ZYX expression was decreased in osteosarcoma, and its higher expression indicated better outcomes in patients with osteosarcoma. ZYX overexpression significantly inhibited the proliferation, migration, and invasion of osteosarcoma cells, whereas ZYX silencing resulted in the opposite trend. Subsequently, we found that the Rap1 signaling pathway was significantly correlated with ZYX expression as reported in The Cancer Genome Atlas's database using bioinformatic analysis. Moreover, we found that ZYX overexpression regulated the Rap1/MEK/ERK axis, and osteosarcoma cell growth, migration, and invasion were consequently restrained. Additionally, by administering tumor cells subcutaneously to nude mice, a mouse model of transplanted tumors was created. Compared to the control group, the ZYX overexpression group's tumors were lighter and smaller, and the ZYX/Rap1 axis was activated in the ZYX overexpression group. Taken together, our results suggest that ZYX inhibits osteosarcoma cell proliferation, migration, and invasion by regulating the Rap1/MEK/ERK signaling pathway. ZYX might be crucial in the clinical management of osteosarcoma and is a promising novel therapeutic target in patients with this disease.
Collapse
Affiliation(s)
- Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Zhou
- Department of Orthopedics, Ezhou Central Hospital, Ezhou 436000, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Serre JM, Slabodnick MM, Goldstein B, Hardin J. SRGP-1/srGAP and AFD-1/afadin stabilize HMP-1/⍺-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genet 2023; 19:e1010507. [PMID: 36867663 PMCID: PMC10016700 DOI: 10.1371/journal.pgen.1010507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
A hallmark of gastrulation is the establishment of germ layers by internalization of cells initially on the exterior. In C. elegans the end of gastrulation is marked by the closure of the ventral cleft, a structure formed as cells internalize during gastrulation, and the subsequent rearrangement of adjacent neuroblasts that remain on the surface. We found that a nonsense allele of srgp-1/srGAP leads to 10-15% cleft closure failure. Deletion of the SRGP-1/srGAP C-terminal domain led to a comparable rate of cleft closure failure, whereas deletion of the N-terminal F-BAR region resulted in milder defects. Loss of the SRGP-1/srGAP C-terminus or F-BAR domain results in defects in rosette formation and defective clustering of HMP-1/⍺-catenin in surface cells during cleft closure. A mutant form of HMP-1/⍺-catenin with an open M domain can suppress cleft closure defects in srgp-1 mutant backgrounds, suggesting that this mutation acts as a gain-of-function allele. Since SRGP-1 binding to HMP-1/⍺-catenin is not favored in this case, we sought another HMP-1 interactor that might be recruited when HMP-1/⍺-catenin is constitutively open. A good candidate is AFD-1/afadin, which genetically interacts with cadherin-based adhesion later during embryonic elongation. AFD-1/afadin is prominently expressed at the vertex of neuroblast rosettes in wildtype, and depletion of AFD-1/afadin increases cleft closure defects in srgp-1/srGAP and hmp-1R551/554A/⍺-catenin backgrounds. We propose that SRGP-1/srGAP promotes nascent junction formation in rosettes; as junctions mature and sustain higher levels of tension, the M domain of HMP-1/⍺-catenin opens, allowing maturing junctions to transition from recruitment of SRGP-1/srGAP to AFD-1/afadin. Our work identifies new roles for ⍺-catenin interactors during a process crucial to metazoan development.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
| | - Mark M. Slabodnick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Knox University, Galesburg, Illinois, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Hardin
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Lynch AM, Zhu Y, Lucas BG, Winkelman JD, Bai K, Martin SCT, Block S, Slabodnick MM, Audhya A, Goldstein B, Pettitt J, Gardel ML, Hardin J. TES-1/Tes and ZYX-1/Zyxin protect junctional actin networks under tension during epidermal morphogenesis in the C. elegans embryo. Curr Biol 2022; 32:5189-5199.e6. [PMID: 36384139 PMCID: PMC9729467 DOI: 10.1016/j.cub.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
LIM-domain-containing repeat (LCR) proteins are recruited to strained actin filaments within stress fibers in cultured cells,1,2,3 but their roles at cell-cell junctions in living organisms have not been extensively studied. Here, we show that the Caenorhabditis elegans LCR proteins TES-1/Tes and ZYX-1/Zyxin are recruited to apical junctions during embryonic elongation when junctions are under tension. In genetic backgrounds in which embryonic elongation fails, junctional recruitment is severely compromised. The two proteins display complementary patterns of expression: TES-1 is expressed in lateral (seam) epidermal cells, whereas ZYX-1 is expressed in dorsal and ventral epidermal cells. tes-1 and zyx-1 mutant embryos display junctional F-actin defects. The loss of either protein strongly enhances morphogenetic defects in hypomorphic mutant backgrounds for cadherin/catenin complex (CCC) components. The LCR regions of TES-1 and ZYX-1 are recruited to stress fiber strain sites (SFSSs) in cultured vertebrate cells. Together, these data establish TES-1 and ZYX-1 as components of a multicellular, tension-sensitive system that stabilizes the junctional actin cytoskeleton during embryonic morphogenesis.
Collapse
Affiliation(s)
- Allison M Lynch
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Yuyun Zhu
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Bethany G Lucas
- Department of Biology, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Keliya Bai
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mark M Slabodnick
- Department of Biology, Knox University, Galesburg, IL 61401, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan Pettitt
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Department of Physics, James Franck Institute and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA; Biophysics Program, University of Wisconsin, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Castaneda PG, Wu N, Qiu Z, Lee M, Cram EJ. ZYX-1/Zyxin plays a minor role in oocyte transit through the spermatheca in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000489. [PMID: 34703987 PMCID: PMC8531952 DOI: 10.17912/micropub.biology.000489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022]
Abstract
In C. elegans, oocytes are ovulated into the spermatheca, where they are fertilized before being pushed into the uterus. Contraction in the C. elegans spermatheca is driven by circumferential acto-myosin fibers. The C. elegans zyxin homolog, zyx-1, is expressed in the body wall muscle, pharynx and spermatheca. To our surprise, a CRISPR-generated zyx-1 deletion allele results in no overt developmental phenotypes, and the spermathecal actin cytoskeleton appears wild type, however, oocyte transit through the spermatheca is slower than in wild type animals. This suggests ZYX-1/Zyxin may regulate spermathecal contraction magnitude or timing of spermathecal bag contraction and/or spermathecal-uterine valve dilation.
Collapse
Affiliation(s)
| | - Nan Wu
- Northeastern University, Department of Bioengineering, Boston, MA, USA
| | | | - Myeongwoo Lee
- Baylor University, Department of Biology, Waco, TX, USA
| | - Erin J. Cram
- Northeastern University, Department of Biology, Boston, MA, USA,
Correspondence to: Erin J. Cram ()
| |
Collapse
|
6
|
Dias C, Nita E, Faktor J, Tynan AC, Hernychova L, Vojtesek B, Nylandsted J, Hupp TR, Kunath T, Ball KL. CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity. iScience 2021; 24:102878. [PMID: 34401662 PMCID: PMC8350547 DOI: 10.1016/j.isci.2021.102878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
CHIP is an E3-ubiquitin ligase that contributes to healthy aging and has been characterized as neuroprotective. To elucidate dominant CHIP-dependent changes in protein steady-state levels in a patient-derived human neuronal model, CHIP function was ablated using gene-editing and an unbiased proteomic analysis conducted to compare knock-out and wild-type isogenic induced pluripotent stem cell (iPSC)-derived cortical neurons. Rather than a broad effect on protein homeostasis, loss of CHIP function impacted on a focused cohort of proteins from actin cytoskeleton signaling and membrane integrity networks. In support of the proteomics, CHIP knockout cells had enhanced sensitivity to induced membrane damage. We conclude that the major readout of CHIP function in cortical neurons derived from iPSC of a patient with elevate α-synuclein, Parkinson's disease and dementia, is the modulation of substrates involved in maintaining cellular "health". Thus, regulation of the actin cytoskeletal and membrane integrity likely contributes to the neuroprotective function(s) of CHIP.
Collapse
Affiliation(s)
- Catarina Dias
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jakub Faktor
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- University of Gdansk, International Centre for Cancer Vaccine Science, 80-822 Gdansk, Poland
| | - Ailish C. Tynan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Jesper Nylandsted
- Membrane Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Ted R. Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- University of Gdansk, International Centre for Cancer Vaccine Science, 80-822 Gdansk, Poland
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kathryn L. Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
7
|
Lesanpezeshki L, Qadota H, Darabad MN, Kashyap K, Lacerda CMR, Szewczyk NJ, Benian GM, Vanapalli SA. Investigating the correlation of muscle function tests and sarcomere organization in C. elegans. Skelet Muscle 2021; 11:20. [PMID: 34389048 PMCID: PMC8362255 DOI: 10.1186/s13395-021-00275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Caenorhabditis elegans has been widely used as a model to study muscle structure and function. Its body wall muscle is functionally and structurally similar to vertebrate skeletal muscle with conserved molecular pathways contributing to sarcomere structure, and muscle function. However, a systematic investigation of the relationship between muscle force and sarcomere organization is lacking. Here, we investigate the contribution of various sarcomere proteins and membrane attachment components to muscle structure and function to introduce C. elegans as a model organism to study the genetic basis of muscle strength. Methods We employ two recently developed assays that involve exertion of muscle forces to investigate the correlation of muscle function to sarcomere organization. We utilized a microfluidic pillar-based platform called NemaFlex that quantifies the maximum exertable force and a burrowing assay that challenges the animals to move in three dimensions under a chemical stimulus. We selected 20 mutants with known defects in various substructures of sarcomeres and compared the physiological function of muscle proteins required for force generation and transmission. We also characterized the degree of sarcomere disorganization using immunostaining approaches. Results We find that mutants with genetic defects in thin filaments, thick filaments, and M-lines are generally weaker, and our assays are successful in detecting the functional changes in response to each sarcomere location tested. We find that the NemaFlex and burrowing assays are functionally distinct informing on different aspects of muscle physiology. Specifically, the burrowing assay has a larger bandwidth in phenotyping muscle mutants, because it could pick ten additional mutants impaired while exerting normal muscle force in NemaFlex. This enabled us to combine their readouts to develop an integrated muscle function score that was found to correlate with the score for muscle structure disorganization. Conclusions Our results highlight the suitability of NemaFlex and burrowing assays for evaluating muscle physiology of C. elegans. Using these approaches, we discuss the importance of the studied sarcomere proteins for muscle function and structure. The scoring methodology we have developed enhances the utility of C. elegans as a genetic model to study muscle function. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00275-4.
Collapse
Affiliation(s)
- Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | | | - Karishma Kashyap
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, United Kingdom & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, DE22 3DT, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
8
|
Proteomic analysis of Caenorhabditis elegans against Salmonella Typhi toxic proteins. Genes Immun 2021; 22:75-92. [PMID: 33986511 DOI: 10.1038/s41435-021-00132-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Bacterial effector molecules are crucial infectious agents that can cause pathogenesis. In the present study, the pathogenesis of toxic Salmonella enterica serovar Typhi (S. Typhi) proteins on the model host Caenorhabditis elegans was investigated by exploring the host's regulatory proteins during infection through the quantitative proteomics approach. Extracted host proteins were analyzed using two-dimensional gel electrophoresis (2D-GE) and differentially regulated proteins were identified using MALDI TOF/TOF/MS analysis. Of the 150 regulated proteins identified, 95 were downregulated while 55 were upregulated. The interaction network of regulated proteins was predicted using the STRING tool. Most downregulated proteins were involved in muscle contraction, locomotion, energy hydrolysis, lipid synthesis, serine/threonine kinase activity, oxidoreductase activity, and protein unfolding. Upregulated proteins were involved in oxidative stress pathways. Hence, cellular stress generated by S. Typhi proteins in the model host was determined using lipid peroxidation as well as oxidant and antioxidant assays. In addition, candidate proteins identified via extract analysis were validated by western blotting, and the roles of several crucial molecules were analyzed in vivo using transgenic strains (myo-2 and col-19) and mutant (ogt-1) of C. elegans. To the best of our knowledge, this is the first study to report protein regulation in host C. elegans exposed to toxic S. Typhi proteins. It highlights the significance of p38 MAPK and JNK immune pathways.
Collapse
|
9
|
Ellwood RA, Piasecki M, Szewczyk NJ. Caenorhabditis elegans as a Model System for Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22094891. [PMID: 34063069 PMCID: PMC8125261 DOI: 10.3390/ijms22094891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.
Collapse
Affiliation(s)
- Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence:
| |
Collapse
|
10
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
11
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Xu D, Gao Y, Guo L, Lin C, Sun Y. Effect of dys-1 mutation on gene expression profile in space-flown Caenorhabditis elegans. Muscle Nerve 2018; 58:114-122. [PMID: 29346705 DOI: 10.1002/mus.26076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Dystrophin-like dys-1 gene expression increases in the body wall muscles of Caenorhabditis elegans after spaceflight (SF). Here we used a dys-1(cx18) mutant to analyze the molecular adaptive responses of C. elegans to SF. METHODS DNA microarrays were performed to identify differentially expressed genes between wild-type (WT) and dys-1 mutant worms after SF. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, predicted human diseases, and screened out key genes for human muscle diseases with NextBio. RESULTS Gene expression was less affected by SF in the dys-1 mutant than in the WT worms. The dys-1 mutation influenced neuromuscular gene expression (neuropeptide genes, muscle-related genes, and dystrophin-related genes) under SF conditions, among which 15 genes were specifically regulated by dys-1. NextBio analysis predicted that cdka-1, lev-11, unc-27, and unc-94 genes might play critical roles in muscle atrophy. DISCUSSION dys-1 Potentially regulates the neuromuscular system in space. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1 Dalian, 116026, People's Republic of China
| | - Ying Gao
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1 Dalian, 116026, People's Republic of China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Lin Guo
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1 Dalian, 116026, People's Republic of China
| | - Chenggang Lin
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1 Dalian, 116026, People's Republic of China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1 Dalian, 116026, People's Republic of China
| |
Collapse
|
13
|
Loveless T, Qadota H, Benian GM, Hardin J. Caenorhabditis elegans SORB-1 localizes to integrin adhesion sites and is required for organization of sarcomeres and mitochondria in myocytes. Mol Biol Cell 2017; 28:3621-3633. [PMID: 28978740 PMCID: PMC5706990 DOI: 10.1091/mbc.e16-06-0455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
We have identified and characterized sorb-1, the only sorbin and SH3 domain-containing protein family member in Caenorhabditis elegans SORB-1 is strongly localized to integrin adhesion complexes in larvae and adults, including adhesion plaques and dense bodies (Z-disks) of striated muscles and attachment plaques of smooth muscles. SORB-1 is recruited to the actin-binding, membrane-distal regions of dense bodies via its C-terminal SH3 domains in an ATN-1(α-actinin)- and ALP-1(ALP/Enigma)-dependent manner, where it contributes to the organization of sarcomeres. SORB-1 is also found in other tissues known to be under mechanical stress, including stress fibers in migratory distal tip cells and the proximal gonad sheath, where it becomes enriched in response to tissue distention. We provide evidence for a novel role for sorbin family proteins: SORB-1 is required for normal positioning of the mitochondrial network in muscle cells. Finally, we demonstrate that SORB-1 interacts directly with two other dense body components, DEB-1(vinculin) and ZYX-1(zyxin). This work establishes SORB-1 as a bona fide sorbin family protein-one of the late additions to the dense body complex and a conserved regulator of body wall muscle sarcomere organization and organelle positioning.
Collapse
Affiliation(s)
- Timothy Loveless
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Jeff Hardin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
14
|
Qadota H, Mayans O, Matsunaga Y, McMurry JL, Wilson KJ, Kwon GE, Stanford R, Deehan K, Tinley TL, Ngwa VM, Benian GM. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Mol Biol Cell 2016; 27:1606-20. [PMID: 27009202 PMCID: PMC4865318 DOI: 10.1091/mbc.e15-09-0675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 11/11/2022] Open
Abstract
UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89's SH3 domain and residues 294-376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89's SH3 is α-helical and lacks prolines. Homology modeling of UNC-89's SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a "skip residue," which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Kristy J Wilson
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Grace E Kwon
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Rachel Stanford
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kevin Deehan
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Tina L Tinley
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Verra M Ngwa
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
15
|
Brouilly N, Lecroisey C, Martin E, Pierson L, Mariol MC, Qadota H, Labouesse M, Streichenberger N, Mounier N, Gieseler K. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process. Hum Mol Genet 2015; 24:6428-45. [PMID: 26358775 DOI: 10.1093/hmg/ddv353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.
Collapse
Affiliation(s)
- Nicolas Brouilly
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Claire Lecroisey
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Laura Pierson
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marie-Christine Mariol
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Hiroshi Qadota
- Department of Pathology, Emory University, 615 Michael Street, Whitehead 165, Atlanta, GA 30322, USA
| | - Michel Labouesse
- Intitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 964, 1 rue Laurent Fries, BP 10142, 67404 Illkirch CEDEX, France and
| | | | - Nicole Mounier
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Kathrin Gieseler
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France,
| |
Collapse
|
16
|
Luo S, Schaefer AM, Dour S, Nonet ML. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans. Development 2014; 141:3922-33. [PMID: 25252943 DOI: 10.1242/dev.108217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development.
Collapse
Affiliation(s)
- Shuo Luo
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Anneliese M Schaefer
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA Department of Neurology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Scott Dour
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
17
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Qadota H, Benian GM. An approach for exploring interaction between two proteins in vivo. Front Physiol 2014; 5:162. [PMID: 24808865 PMCID: PMC4010775 DOI: 10.3389/fphys.2014.00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
We describe a strategy for exploring the function of protein-protein interactions in striated muscle in vivo. We describe our experience using this strategy to study the interaction of UNC-112 (kindlin) with PAT-4 (integrin linked kinase). Random mutagenesis is used to generate a collection of mutants that are screened for lack of binding or gain of binding using a yeast 2-hybrid assay. The mutant proteins are then expressed in transgenic C. elegans to determine their ability to localize in the sarcomere. We emphasize two advantages of this strategy: (1) for studying the interaction of protein A with protein B, when protein A can interact with multiple proteins, and (2) it explores the function of an interaction rather than the absence of, or reduced level of, a protein as can be obtained with null mutants or knockdown by RNAi. We propose that this method can be generalized for studying the meaning of a protein-protein interaction in muscle for any system in which transgenic animals can be generated and their muscles can be imaged.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University Atlanta, GA, USA
| | - Guy M Benian
- Department of Pathology, Emory University Atlanta, GA, USA
| |
Collapse
|
19
|
Cram EJ. Mechanotransduction in C. elegans morphogenesis and tissue function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:281-316. [PMID: 25081623 DOI: 10.1016/b978-0-12-394624-9.00012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
Collapse
Affiliation(s)
- Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Mariol MC, Walter L, Bellemin S, Gieseler K. A rapid protocol for integrating extrachromosomal arrays with high transmission rate into the C. elegans genome. J Vis Exp 2013:e50773. [PMID: 24379027 PMCID: PMC4396716 DOI: 10.3791/50773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microinjecting DNA into the cytoplasm of the syncytial gonad of Caenorhabditis elegans is the main technique used to establish transgenic lines that exhibit partial and variable transmission rates of extrachromosomal arrays to the next generation. In addition, transgenic animals are mosaic and express the transgene in a variable number of cells. Extrachromosomal arrays can be integrated into the C. elegans genome using UV irradiation to establish nonmosaic transgenic strains with 100% transmission rate of the transgene. To that extent, F1 progenies of UV irradiated transgenic animals are screened for animals carrying a heterozygous integration of the transgene, which leads to a 75% Mendelian transmission rate to the F2 progeny. One of the challenges of this method is to distinguish between the percentage of transgene transmission in a population before (X% transgenic animals) and after integration (≥75% transgenic F2 animals). Thus, this method requires choosing a nonintegrated transgenic line with a percentage of transgenic animals that is significantly lower than the Mendelian segregation of 75%. Consequently, nonintegrated transgenic lines with an extrachromosomal array transmission rate to the next generation ≤60% are usually preferred for integration, and transgene integration in highly transmitting strains is difficult. Here we show that the efficiency of extrachromosomal arrays integration into the genome is increased when using highly transmitting transgenic lines (≥80%). The described protocol allows for easy selection of several independent lines with homozygous transgene integration into the genome after UV irradiation of transgenic worms exhibiting a high rate of extrachromosomal array transmission. Furthermore, this method is quite fast and low material consuming. The possibility of rapidly generating different lines that express a particular integrated transgene is of great interest for studies focusing on gene expression pattern and regulation, protein localization, and overexpression, as well as for the development of subcellular markers.
Collapse
|