1
|
Chang J, Pickard A, Herrera JA, O'Keefe S, Garva R, Hartshorn M, Hoyle A, Dingle L, Knox J, Jowitt TA, Coy M, Wong J, Reid A, Lu Y, Zeltz C, Venkateswaran RV, Caswell PT, High S, Gullberg D, Kadler KE. Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis. eLife 2025; 13:RP95842. [PMID: 39812558 PMCID: PMC11735028 DOI: 10.7554/elife.95842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.
Collapse
Affiliation(s)
- Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Adam Pickard
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Jeremy A Herrera
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Sarah O'Keefe
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Matthew Hartshorn
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Anna Hoyle
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Lewis Dingle
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - John Knox
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Madeleine Coy
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Adam Reid
- Blond McIndoe Laboratories, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Center of Excellence, University of BergenBergenNorway
| | - Rajamiyer V Venkateswaran
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Patrick T Caswell
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Stephen High
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Center of Excellence, University of BergenBergenNorway
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
2
|
Ricaurte M, Schizas NV, Weil EF, Ciborowski P, Boukli NM. Seasonal Proteome Variations in Orbicella faveolata Reveal Molecular Thermal Stress Adaptations. Proteomes 2024; 12:20. [PMID: 39051238 PMCID: PMC11270422 DOI: 10.3390/proteomes12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Although seasonal water temperatures typically fluctuate by less than 4 °C across most tropical reefs, sustained heat stress with an increase of even 1 °C can alter and destabilize metabolic and physiological coral functions, leading to losses of coral reefs worldwide. The Caribbean region provides a natural experimental design to study how corals respond physiologically throughout the year. While characterized by warm temperatures and precipitation, there is a significant seasonal component with relative cooler and drier conditions during the months of January to February and warmer and wetter conditions during September and October. We conducted a comparative abundance of differentially expressed proteins with two contrasting temperatures during the cold and warm seasons of 2014 and 2015 in Orbicella faveolata, one of the most important and affected reef-building corals of the Caribbean. All presented proteoforms (42) were found to be significant in our proteomics differential expression analysis and classified based on their gene ontology. The results were accomplished by a combination of two-dimensional gel electrophoresis (2DE) to separate and visualize proteins and mass spectrometry (MS) for protein identification. To validate the differentially expressed proteins of Orbicella faveolata at the transcription level, qRT-PCR was performed. Our data indicated that a 3.1 °C increase in temperature in O. faveolata between the cold and warm seasons in San Cristobal and Enrique reefs of southwestern Puerto Rico was enough to affect the expression of a significant number of proteins associated with oxidative and heat stress responses, metabolism, immunity, and apoptosis. This research extends our knowledge into the mechanistic response of O. faveolata to mitigate thermal seasonal temperature variations in coral reefs.
Collapse
Affiliation(s)
- Martha Ricaurte
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Nikolaos V. Schizas
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Ernesto F. Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Pawel Ciborowski
- Mass Spectrometry and Proteomics Core Facility, Durham Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nawal M. Boukli
- Biomedical Proteomics Facility, Microbiology and Immunology Department, Universidad Central del Caribe, Bayamón, PR 00960, USA
| |
Collapse
|
3
|
De Martino D, Bravo-Cordero JJ. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res 2023; 83:1386-1392. [PMID: 36638361 PMCID: PMC10159947 DOI: 10.1158/0008-5472.can-22-2034] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen is one of the most abundant proteins in animals and a major component of the extracellular matrix (ECM) in tissues. Besides playing a role as a structural building block of tissues, collagens can modulate the behavior of cells, and their deregulation can promote diseases such as cancer. In tumors, collagens and many other ECM molecules are mainly produced by fibroblasts, and recent evidence points toward a role of tumor-derived collagens in tumor progression and metastasis. In this review, we focus on the newly discovered functions of collagens in cancer. Novel findings have revealed the role of collagens in tumor dormancy and immune evasion, as well as their interplay with cancer cell metabolism. Collagens could serve as prognostic markers for patients with cancer, and therapeutic strategies targeting the collagen ECM have the potential to prevent tumor progression and metastasis.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
4
|
Hwang J, Kiick KL, Sullivan MO. Modified hyaluronic acid-collagen matrices trigger efficient gene transfer and prohealing behavior in fibroblasts for improved wound repair. Acta Biomater 2022; 150:138-153. [PMID: 35907557 DOI: 10.1016/j.actbio.2022.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/01/2022]
Abstract
Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-β1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM have significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Millicent O Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Vemula V, Huber T, Ušaj M, Bugyi B, Månsson A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J Biol Chem 2020; 296:100181. [PMID: 33303625 PMCID: PMC7948409 DOI: 10.1074/jbc.ra120.015863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Actin is a major intracellular protein with key functions in cellular motility, signaling, and structural rearrangements. Its dynamic behavior, such as polymerization and depolymerization of actin filaments in response to intracellular and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor-induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy–based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.
Collapse
Affiliation(s)
- Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
6
|
Minor AJ, Coulombe KLK. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J Biomed Mater Res B Appl Biomater 2020; 108:2407-2416. [PMID: 31984665 PMCID: PMC7334070 DOI: 10.1002/jbm.b.34573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Engineering an angiogenic material for regenerative medicine requires knowledge of native extracellular matrix remodeling by cellular processes in angiogenesis. Vascularization remains a key challenge in the field of tissue engineering, one that can be mitigated by developing platforms conducive to guiding dynamic cell-matrix interactions required for new vessel formation. In this review, we highlight nuanced processes of angiogenesis and demonstrate how materials engineering is being used to interface with dynamic type I collagen remodeling, Notch and VEGF signaling, cell migration, and tissue morphogenesis. Because α1(I)-collagen is secreted by endothelial tip cells during sprouting angiogenesis and required for migration, collagen is a very useful natural biomaterial and its angiogenic modifications are described. The balance between collagen types I and IV via secretion and degradation is tightly controlled by proteinases and other cell types that are capable of internalizing collagen to maintain tissue integrity. Thus, we provide examples in skin and cardiac tissue engineering of collagen tailoring in diverse cellular microenvironments for tissue regeneration. As our understanding of how to drive collagen remodeling and cellular phenotype through angiogenic pathways grows, our capabilities to model and manipulate material systems must continue to expand to develop novel applications for wound healing, angiogenic therapy, and regenerative medicine.
Collapse
Affiliation(s)
- Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
7
|
Hwang J, Sullivan MO, Kiick KL. Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Front Bioeng Biotechnol 2020; 8:69. [PMID: 32133350 PMCID: PMC7040483 DOI: 10.3389/fbioe.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of drug delivery vehicles to improve the efficacy of drugs and to target their action at effective concentrations over desired periods of time has been an active topic of research and clinical investigation for decades. Both synthetic and natural drug delivery materials have facilitated locally controlled as well as targeted drug delivery. Extracellular matrix (ECM) molecules have generated widespread interest as drug delivery materials owing to the various biological functions of ECM. Hydrogels created using ECM molecules can provide not only biochemical and structural support to cells, but also spatial and temporal control over the release of therapeutic agents, including small molecules, biomacromolecules, and cells. In addition, the modification of drug delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-targeted delivery and improved the therapeutic efficiency of drugs through interaction with highly expressed cellular receptors for ECM. The combination of ECM-derived hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a great promise for the delivery of intracellular drugs, which require specific endocytic pathways for maximal effectiveness. In this review, we provide an overview of cellular receptors that interact with ECM molecules and discuss examples of selected ECM components that have been applied for drug delivery in both local and systemic platforms. Finally, we highlight the potential impacts of utilizing the interaction between ECM components and cellular receptors for intracellular delivery, particularly in tissue regeneration applications.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
8
|
Su X, Ni H, Jin W, Pan L. Nicotinic acid affects cytoskeleton remodeling via increasing the activity of gelsolin. Cytoskeleton (Hoboken) 2019; 76:415-422. [PMID: 31525283 DOI: 10.1002/cm.21563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Our previous research has demonstrated that nicotinic acid (NA) might suppress the angiogenesis by modulating the expression of angiogenesis factors and promoting the cytoskeleton remodeling. However, the underlying mechanism need to be further elucidated. The intracellular Ca2+ concentration was measured by a [Ca2+ ] detection kit. The F-actin depolymerization was shown by immunofluorescence staining. The protein levels of F-actin and G-actin were determined by Western blot. The effects of NA treatment on the gelsolin-PI3Kα (p110α) interaction were investigated by co-immunoprecipitation (Co-IP). NA treatment caused an initial drop and then induced a significant increase in [Ca2+ ] with a time and dose dependent manner. In addition, NA promoted the depolymerization of F-actin and knockdown of gelsolin substantially rescued the effects caused by NA treatment. NA treatment significantly inhibited the interaction between phosphoinositide 3-kinase (PI3K) α (p110α) and gelsolin and addition of phosphatidylinositol (3,4,5)-triphosphate (PIP3) increased the protein level of F-actin and rescued the F/G-actin ratio. In conclusion, our results indicated NA treatment could interfere with the ability of PI3Kα (p110α) to inhibit the activity of gelsolin by decomposing PIP2 to produce PIP3, thereby increasing the activity of gelsolin, which ultimately acted on the remodeling of the cytoskeleton and exerted an inhibitory effect on angiogenesis.
Collapse
Affiliation(s)
- Xiang Su
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxu Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lemen Pan
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118510. [PMID: 31319111 DOI: 10.1016/j.bbamcr.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Discoidin Domain Receptor (DDR) genes and their homologues have been identified in sponges, worms and flies. These genes code for proteins that are implicated in cell adhesion to matrix proteins. DDRs are now recognized as playing central regulatory roles in several high prevalence human diseases, including invasive cancers, atherosclerosis, and organ fibrosis. While the mechanisms by which DDRs contribute to these diseases are just now being delineated, one of the common themes involves cell adhesion to collagen and the assembly and organization of collagen fibers in the extracellular matrix. In mammals, the multi-functional roles of DDRs in promoting cell adhesion to collagen fibers and in mediating collagen-dependent signaling, suggest that DDRs contribute to multiple pathways of extracellular matrix remodeling, which are centrally important processes in health and disease. In this review we consider that interactions of the cytoplasmic domains of DDR1 with cytoskeletal motor proteins may contribute to matrix remodeling by promoting collagen fiber alignment and compaction. Poorly controlled collagen remodeling with excessive compaction of matrix proteins is a hallmark of fibrotic lesions in many organs and tissues that are affected by infectious, traumatic or chemical-mediated injury. An improved understanding of the mechanisms by which DDRs mediate collagen remodeling and collagen-dependent signaling could suggest new drug targets for treatment of fibrotic diseases.
Collapse
Affiliation(s)
- N M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - A Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - C A McCulloch
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol 2019; 75-76:190-200. [DOI: 10.1016/j.matbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
11
|
Soekmadji C, Rockstroh A, Ramm GA, Nelson CC, Russell PJ. Extracellular Vesicles in the Adaptive Process of Prostate Cancer during Inhibition of Androgen Receptor Signaling by Enzalutamide. Proteomics 2018; 17. [PMID: 29105980 DOI: 10.1002/pmic.201600427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/11/2017] [Indexed: 01/05/2023]
Abstract
Current treatments for advanced prostate cancer focus on inhibition of the androgen receptor (AR) by androgen deprivation therapy (ADT). However, complex interactions mediated by tumor suppressors, oncogenes, aberrations of AR expression, or de novo androgen production have been shown to induce the adaptive response of prostate cancer, leading to the development of castration resistant prostate cancer. In this study, we report the effects of AR antagonist, enzalutamide on the protein contents of extracellular vesicles (EVs). EVs mediate cell-to-cell communication and increasing evidence shows the role of EVs in promoting cancer survival and metastasis. We found that treatment with enzalutamide alters the secretion of EVs, one of which is a plasma membrane calcium pump, ATP2B1/PMCA ATPase, as an AR-regulated EV protein. We highlight the networks of interactions between AR, Ca2+ , and ATP2B1, where the extracellular proteins thrombospondin-1, gelsolin, and integrinß1 were previously reported as regulators for cancer progression and metastasis, indicating the potential role of EV-derived proteins in mediating calcium homoeostasis under AR inhibition by enzalutamide. Our data further highlight the cross-talk between AR signaling and EV pathways in mediating resistance toward ADT.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT),, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT),, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT),, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Arseni L, Lombardi A, Orioli D. From Structure to Phenotype: Impact of Collagen Alterations on Human Health. Int J Mol Sci 2018; 19:ijms19051407. [PMID: 29738498 PMCID: PMC5983607 DOI: 10.3390/ijms19051407] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic and heterogeneous structure that plays multiple roles in living organisms. Its integrity and homeostasis are crucial for normal tissue development and organ physiology. Loss or alteration of ECM components turns towards a disease outcome. In this review, we provide a general overview of ECM components with a special focus on collagens, the most abundant and diverse ECM molecules. We discuss the different functions of the ECM including its impact on cell proliferation, migration and differentiation by highlighting the relevance of the bidirectional cross-talk between the matrix and surrounding cells. By systematically reviewing all the hereditary disorders associated to altered collagen structure or resulting in excessive collagen degradation, we point to the functional relevance of the collagen and therefore of the ECM elements for human health. Moreover, the large overlapping spectrum of clinical features of the collagen-related disorders makes in some cases the patient clinical diagnosis very difficult. A better understanding of ECM complexity and molecular mechanisms regulating the expression and functions of the various ECM elements will be fundamental to fully recognize the different clinical entities.
Collapse
Affiliation(s)
- Lavinia Arseni
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Anita Lombardi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Gomez CP, Descoteaux A. Moesin and myosin IIA modulate phagolysosomal biogenesis in macrophages. Biochem Biophys Res Commun 2017; 495:1964-1971. [PMID: 29247647 DOI: 10.1016/j.bbrc.2017.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
Biogenesis of phagolysosomes is central to the elimination of pathogens by macrophages. We previously showed that Src homology region 2 domain-containing phosphatase 1 (SHP-1) participates in the regulation of phagosome maturation. Through proteomics, we identified moesin and the non-muscle myosin-IIA as proteins interacting with SHP-1 during phagocytosis. Silencing of either moesin or myosin IIA with small interfering RNA inhibited phagosomal acidification and recruitment of LAMP-1. Moreover, the intraphagosomal oxidative burst was impaired in the absence of either SHP-1 or myosin IIA but not moesin. Finally, absence of either SHP-1, moesin, or myosin IIA ablated the capacity of macrophages to clear bacterial infection. Collectively, these results implicate both moesin and myosin IIA in the regulation of phagolysosome biogenesis and in host defense against infections.
Collapse
Affiliation(s)
- Carolina P Gomez
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
14
|
Ford AJ, Rajagopalan P. Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1503. [PMID: 29171177 DOI: 10.1002/wnan.1503] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) plays a critical role in regulating cell behavior during tissue homeostasis and in disease progression. Through a combination of adhesion, contraction, alignment of ECM proteins and subsequent degradation, cells change the chemical, mechanical, and physical properties of their surrounding matrix. Other contributing factors to matrix remodeling are the de novo synthesis of ECM proteins, post-translational modifications and receptor-mediated internalization. In this review, we highlight how each of these processes contributes to the maintenance of homeostasis and in disease conditions such as cancer and liver fibrosis. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Andrew J Ford
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.,ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
15
|
Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochem Soc Trans 2017; 44:1347-1354. [PMID: 27911717 DOI: 10.1042/bst20160159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a network of secreted proteins that, beyond providing support for tissues and organs, is involved in the regulation of a variety of cell functions, including cell proliferation, polarity, migration and oncogenic transformation. ECM homeostasis is maintained through a tightly controlled balance between synthesis, deposition and degradation. While the role of metalloproteases in ECM degradation is widely recognised, the contribution of ECM internalisation and intracellular degradation to ECM maintenance has been mostly overlooked. In this review, I will summarise what is known about the molecular mechanisms mediating ECM endocytosis and how this process impacts on diseases, such as fibrosis and cancer.
Collapse
|
16
|
Mezawa M, Pinto VI, Kazembe MP, Lee WS, McCulloch CA. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB J 2016; 30:3613-3627. [DOI: 10.1096/fj.201600354rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Masaru Mezawa
- Department of PeriodontologyNihon University School of Dentistry at Matsudo Matsudo Japan
| | - Vanessa I. Pinto
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Mwayi P. Kazembe
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Wilson S. Lee
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | | |
Collapse
|
17
|
Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 2016; 365:521-38. [DOI: 10.1007/s00441-016-2440-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
|
18
|
Masci VL, Taddei AR, Gambellini G, Giorgi F, Fausto AM. Ultrastructural investigation on fibroblast interaction with collagen scaffold. J Biomed Mater Res A 2015; 104:272-82. [PMID: 26375405 DOI: 10.1002/jbm.a.35563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Collagen-based scaffolds are used as temporary or permanent coverings to help wound healing. Under natural conditions, wound healing is affected by such factors as cell types, growth factors and several components of the extracellular matrix. Due to the complexity of the cell-to-matrix interaction, many cell based mechanisms regulating wound healing in vivo are not yet properly understood. However, the whole process can be partially simulated in vitro to determine how cells interact with the collagen scaffold in relation to such features as physico-chemical properties, matrix architecture and fiber stability. Under these conditions, cell migration into the collagen matrix can be easily assessed and causally correlated with these features. In this study, we aimed at providing a structural analysis of how NIH3T3 fibroblasts migrate and proliferate in vitro when seeded on a native type-I collagen scaffold. To this end, samples were collected at regular time intervals and analyzed by light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Through this experimental approach we demonstrate that collagen is gradually frayed into progressively thinner fibrils as fibroblasts migrate into the matrix, embrace the collagen fibers with long filopodia and form large intracellular vacuoles. A key role in this process is also played by microvesicles shed from the fibroblast plasma membrane and spread over long distances inside the collagen matrix. These observations indicate that a native type-I equine collagen provides favorable conditions for simulating collagen processing in vitro and eventually for unraveling the mechanisms controlling cell uptake and intracellular degradation.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agrifood and Forestry Systems, Tuscia University, Viterbo, 01100, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Tuscia University, Viterbo, 01100, Italy
| | - Gabriella Gambellini
- Section of Electron Microscopy, Great Equipment Center, Tuscia University, Viterbo, 01100, Italy
| | | | - Anna Maria Fausto
- Department for Innovation in Biological, Agrifood and Forestry Systems, Tuscia University, Viterbo, 01100, Italy
| |
Collapse
|
19
|
Zhu X, Cai L, Meng Q, Jin X. Gelsolin inhibits the proliferation and invasion of the 786-0 clear cell renal cell carcinoma cell line in vitro. Mol Med Rep 2015; 12:6887-94. [PMID: 26398833 DOI: 10.3892/mmr.2015.4313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effect of gelsolin (GSN) on the proliferation and invasion of the 786-0 clear cell renal cell carcinoma (ccRCC) cell line in vitro. A GSN overexpression lentiviral vector was constructed and transfected into 786‑0 ccRCC cells in vitro. A 3-(4,5-dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay was conducted to detect the effect of GSN on the proliferation and adhesion ability of the 786‑0 ccRCC cells, and a Transwell invasion assay was used to determine the effect of GSN on the invasion of 786‑0 ccRCC cells. In addition, the expression levels of invasion‑associated proteins, matrix metalloproteinase (MMP)2, MMP9 and E‑cadherin were analyzed by ELISA and western blotting. The MTT assay demonstrated a significantly lower optical density value for the 786‑0/GSN cells compared with that of the 786‑0/green fluorescent protein (GFP) and 786‑0 cells following 24‑ and 48‑h culture (P<0.05). The mean penetration rate of the 786‑0/GSN cells was significantly lower than that of the 786‑0/GFP and 786‑0 cells (P<0.05) according to the Transwell invasion assay. The expression levels of MMP2 and MMP9 were significantly decreased in the 786‑0/GSN cells, when compared with the 786‑0/GFP and 786‑0 cells following a 48‑h transfection, according to ELISA (P<0.001). Furthermore, in the 786‑0/GSN cells, the expression levels of MMP2 and MMP9 were markedly decreased, while the expression of E‑cadherin was markedly increased. Thus, the overexpression of GSN may inhibit the proliferation, adhesion ability and invasion of 786‑0 ccRCC cells. Additionally, GSN downregulated the expression of MMP2 and MMP9, and upregulated the expression of E‑cadherin in the 786‑0 ccRCC cells, which may have suppressed the invasion ability of the 786-0 ccRCC cells.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150089, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
20
|
Bi Y, Mukhopadhyay D, Drinane M, Ji B, Li X, Cao S, Shah VH. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics. Am J Physiol Cell Physiol 2014; 307:C622-33. [PMID: 25080486 DOI: 10.1152/ajpcell.00086.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9.
Collapse
Affiliation(s)
- Yan Bi
- GI Research Unit, Department of Gastroenterology and Hepatology
| | | | - Mary Drinane
- GI Research Unit, Department of Gastroenterology and Hepatology
| | - Baoan Ji
- Department of Biochemistry and Molecular Biology
| | - Xing Li
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minneosota
| | - Sheng Cao
- GI Research Unit, Department of Gastroenterology and Hepatology
| | - Vijay H Shah
- GI Research Unit, Department of Gastroenterology and Hepatology,
| |
Collapse
|
21
|
Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk J, Chait BT, Rout MP, Luna EJ. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 2013; 24:3603-19. [PMID: 24088567 PMCID: PMC3842989 DOI: 10.1091/mbc.e12-10-0714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis.
Collapse
Affiliation(s)
- Tara C Smith
- Program in Cell and Developmental Dynamics, Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065 Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA 01545
| | | | | | | | | | | | | | | | | | | |
Collapse
|