1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Guo Y, Xiong Z, Zhai H, Wang Y, Qi Q, Hou J. The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals biosynthesis. FEMS Yeast Res 2025; 25:foaf014. [PMID: 40121184 PMCID: PMC11974387 DOI: 10.1093/femsyr/foaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Saccharomyces cerevisiae is a promising microbial cell factory. However, the overflow metabolism, known as the Crabtree effect, directs the majority of the carbon source toward ethanol production, in many cases, resulting in low yields of other target chemicals and byproducts accumulation. To construct Crabtree-negative S. cerevisiae, the deletion of pyruvate decarboxylases and/or ethanol dehydrogenases is required. However, these modifications compromises the growth of the strains on glucose. This review discusses the metabolic engineering approaches used to eliminate ethanol production, the efforts to alleviate growth defect of Crabtree-negative strains, and the underlying mechanisms of the growth rescue. In addition, it summarizes the applications of Crabtree-negative S. cerevisiae in the synthesis of various chemicals such as lactic acid, 2,3-butanediol, malic acid, succinic acid, isobutanol, and others.
Collapse
Affiliation(s)
- Yalin Guo
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Zhen Xiong
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Haotian Zhai
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Yuqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
3
|
Ibisoglu MS, Tan M, Yilmazer M, Yilmaz S, Uzuner SK, Topal-Sarikaya A, Palabiyik B. Effects of ScRgt1-Like DNA-binding transcription factor SpRgt1 (SPCC320.03) on Hexose transporters gene expression in Schizosaccharomyces pombe. Arch Microbiol 2024; 206:155. [PMID: 38480568 DOI: 10.1007/s00203-024-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024]
Abstract
Glucose, which plays an essential role in carbon and energy metabolism in eukaryotes, is vital in directing various energy-consuming cellular processes. In S. cerevisiae, transcription factors involved in regulating hexose transporters and their mechanisms of action under different carbon sources were revealed in detail. However, there is limited information on these processes in S. pombe. In this study, the effect of SPCC320.03 (named SpRgt1), the ortholog of ScRgt1 whose molecular mechanism is known in detail in S. cerevisiae, on the transcriptional regulation of hexose transporters (ght1-8) dependent on different carbon sources was investigated. We measured the transcript levels of ght1-8 using the qPCR technique and performed relative evaluation in S. pombe strains (parental, rgt1 deleted mutant, rgt1 overexpressed, and vectoral rgt1 carrying mutant). We aimed to investigate the transcriptional changes caused by the protein product of the rgt1 (SPCC320.03) gene in terms of ght1-8 genes in strains that are grown in different carbon sources (2% glucose, 2% glycerol + 0.1% glucose, and 2% gluconate). Here, we show that SpRgt1 is involved in the regulation of the ght3, ght4, ght6, and ght7 genes but that the ght1, ght2, ght5, and ght8 gene expression vary depending on carbon sources, independently of SpRgt1.
Collapse
Affiliation(s)
- Merve Seda Ibisoglu
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Medet Tan
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Merve Yilmazer
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Sibel Yilmaz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Semian Karaer Uzuner
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşegül Topal-Sarikaya
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
- Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Bedia Palabiyik
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
Kim JH, Mailloux L, Bloor D, Tae H, Nguyen H, McDowell M, Padilla J, DeWaard A. Multiple roles for the cytoplasmic C-terminal domains of the yeast cell surface receptors Rgt2 and Snf3 in glucose sensing and signaling. Sci Rep 2024; 14:4055. [PMID: 38374219 PMCID: PMC10876965 DOI: 10.1038/s41598-024-54628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The plasma membrane proteins Rgt2 and Snf3 are glucose sensing receptors (GSRs) that generate an intracellular signal for the induction of gene expression in response to high and low extracellular glucose concentrations, respectively. The GSRs consist of a 12-transmembrane glucose recognition domain and a cytoplasmic C-terminal signaling tail. The GSR tails are dissimilar in length and sequence, but their distinct roles in glucose signal transduction are poorly understood. Here, we show that swapping the tails between Rgt2 and Snf3 does not alter the signaling activity of the GSRs, so long as their tails are phosphorylated in a Yck-dependent manner. Attachment of the GSR tails to Hxt1 converts the transporter into a glucose receptor; however, the tails attached to Hxt1 are not phosphorylated by the Ycks, resulting in only partial signaling. Moreover, in response to non-fermentable carbon substrates, Rgt2 and Hxt1-RT (RT, Rgt2-tail) are efficiently endocytosed, whereas Snf3 and Hxt1-ST (ST, Snf3-tail) are endocytosis-impaired. Thus, the tails are important regulatory domains required for the endocytosis of the Rgt2 and Snf3 glucose sensing receptors triggered by different cellular stimuli. Taken together, these results suggest multiple roles for the tail domains in GSR-mediated glucose sensing and signaling.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Haeun Tae
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Han Nguyen
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Morgan McDowell
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Jaqueline Padilla
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Anna DeWaard
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
5
|
Yasukawa T, Iwama R, Yamasaki Y, Masuo N, Noda Y. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes. Mol Biol Cell 2024; 35:ar8. [PMID: 37938929 PMCID: PMC10881166 DOI: 10.1091/mbc.e23-03-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Glutathione (GSH), a tripeptide composed of glycine, cysteine, and glutamic acid, is an abundant thiol found in a wide variety of cells, ranging from bacterial to mammalian cells. Adequate levels of GSH are essential for maintaining iron homeostasis. The ratio of oxidized/reduced GSH is strictly regulated in each organelle to maintain the cellular redox potential. Cellular redox imbalances cause defects in physiological activities, which can lead to various diseases. Although there are many reports regarding the cellular response to GSH depletion, studies on stress response to high levels of GSH are limited. Here, we performed genome-scale screening in the yeast Saccharomyces cerevisiae and identified RIM11, BMH1, and WHI2 as multicopy suppressors of the growth defect caused by GSH stress. The deletion strains of each gene were sensitive to GSH. We found that Rim11, a kinase important in the regulation of meiosis, was activated via autophosphorylation upon GSH stress in a glucose-rich medium. Furthermore, RNA-seq revealed that transcription of phospholipid biosynthetic genes was downregulated under GSH stress, and introduction of multiple copies of RIM11 counteracted this effect. These results demonstrate that S. cerevisiae copes with GSH stress via multiple stress-responsive pathways, including a part of the adaptive pathway to glucose limitation.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Ryo Iwama
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Kim JH, Bloor D, Rodriguez R, Mohler E, Mailloux L, Melton S, Jung D. Casein kinases are required for the stability of the glucose-sensing receptor Rgt2 in yeast. Sci Rep 2022; 12:1598. [PMID: 35102180 PMCID: PMC8803954 DOI: 10.1038/s41598-022-05569-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
In yeast, glucose induction of HXT (glucose transporter gene) expression is achieved via the Rgt2 and Snf3 glucose sensing receptor (GSR)-mediated signal transduction pathway. The membrane-associated casein kinases Yck1 and Yck2 (Ycks) are involved in this pathway, but their exact role remains unclear. Previous work suggests that the Ycks are activated by the glucose-bound GSRs and transmit the glucose signal from the plasma membrane to the nucleus. However, here we provide evidence that the YCks are constitutively active and required for the stability of the Rgt2 receptor. Cell surface levels of Rgt2 are significantly decreased in a yck1Δyck2ts mutant, but this is not due to endocytosis-mediated vacuolar degradation of the receptor. Similar observations are made in an akr1Δ mutant, where the Ycks are no longer associated with the membrane, and in a sod1Δ mutant in which the kinases are unstable. Of note, in an akr1Δ mutant, both the Ycks and Rgt2 are mislocalized to the cytoplasm, where Rgt2 is stable and functions as an effective receptor for glucose signaling. We also demonstrate that Rgt2 is phosphorylated on the putative Yck consensus phosphorylation sites in its C-terminal domain (CTD) in a Yck-dependent manner and that this glucose-induced modification is critical for its stability and function. Thus, these results indicate a role for the Ycks in stabilizing Rgt2 and suggest that Rgt2 may use glucose binding as a molecular switch not to activate the Ycks but to promote Yck-dependent interaction and phosphorylation of the CTD that increases its stability.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Rebeca Rodriguez
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Emma Mohler
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Sarah Melton
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Dajeong Jung
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
7
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
8
|
Glucose regulation of the paralogous glucose sensing receptors Rgt2 and Snf3 of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2021; 1865:129881. [PMID: 33617932 DOI: 10.1016/j.bbagen.2021.129881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae senses extracellular glucose levels through the two paralogous glucose sensing receptors Rgt2 and Snf3, which appear to sense high and low levels of glucose, respectively. METHODS Western blotting and qRT-PCR were used to determine expression levels of the glucose sensing receptors. RESULTS Rgt2 and Snf3 are expressed at different levels in response to different glucose concentrations. SNF3 expression is repressed by high glucose, whereas Rgt2 is turned over in response to glucose starvation. As a result, Rgt2 is predominant in cells grown on high glucose, whereas Snf3 is more abundant of the two paralogs in cells grown on low glucose. When expressed from a constitutive promoter, however, Snf3 behaves like Rgt2, being able to transduce the high glucose signal that induces HXT1 expression. Of note, constitutively active Rgt2 does not undergo glucose starvation-induced endocytic downregulation, whereas signaling defective Rgt2 is constitutively targeted for vacuolar degradation. These results suggest that glucose protects Rgt2 from endocytic degradation and reveal a previously unknown function of glucose as a signaling molecule that regulates the stability of its receptor. CONCLUSION Expression of Rgt2 and Snf3 is regulated by different mechanisms: Rgt2 expression is highly regulated at the level of protein stability; Snf3 expression is mainly regulated at the level of transcription. GENERAL SIGNIFICANCE The difference in the roles of Rgt2 and Snf3 in glucose sensing is a consequence of their cell surface abundance rather than a result of the two paralogous proteins having different functions.
Collapse
|
9
|
Nijland JG, Driessen AJM. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol 2020; 7:464. [PMID: 32064252 PMCID: PMC7000353 DOI: 10.3389/fbioe.2019.00464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biomass yields after hydrolysis, besides the hexose D-glucose, D-xylose, and L-arabinose as main pentose sugars. In second generation bioethanol production utilizing the yeast Saccharomyces cerevisiae, it is critical that all three sugars are co-consumed to obtain an economically feasible and robust process. Since S. cerevisiae is unable to metabolize pentose sugars, metabolic pathway engineering has been employed to introduce the respective pathways for D-xylose and L-arabinose metabolism. However, S. cerevisiae lacks specific pentose transporters, and these sugars enter the cell with low affinity via glucose transporters of the Hxt family. Therefore, in the presence of D-glucose, utilization of D-xylose and L-arabinose is poor as the Hxt transporters prefer D-glucose. To solve this problem, heterologous expression of pentose transporters has been attempted but often with limited success due to poor expression and stability, and/or low turnover. A more successful approach is the engineering of the endogenous Hxt transporter family and evolutionary selection for D-glucose insensitive growth on pentose sugars. This has led to the identification of a critical and conserved asparagine residue in Hxt transporters that, when mutated, reduces the D-glucose affinity while leaving the D-xylose affinity mostly unaltered. Likewise, mutant Gal2 transporter have been selected supporting specific uptake of L-arabinose. In fermentation experiments, the transporter mutants support efficient uptake and consumption of pentose sugars, and even co-consumption of D-xylose and D-glucose when used at industrial concentrations. Further improvements are obtained by interfering with the post-translational inactivation of Hxt transporters at high or low D-glucose concentrations. Transporter engineering solved major limitations in pentose transport in yeast, now allowing for co-consumption of sugars that is limited only by the rates of primary metabolism. This paves the way for a more economical second-generation biofuels production process.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Kim S, Dunham MJ, Shendure J. A combination of transcription factors mediates inducible interchromosomal contacts. eLife 2019; 8:e42499. [PMID: 31081754 PMCID: PMC6548505 DOI: 10.7554/elife.42499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/11/2019] [Indexed: 12/30/2022] Open
Abstract
The genome forms specific three-dimensional contacts in response to cellular or environmental conditions. However, it remains largely unknown which proteins specify and mediate such contacts. Here we describe an assay, MAP-C (Mutation Analysis in Pools by Chromosome conformation capture), that simultaneously characterizes the effects of hundreds of cis or trans-acting mutations on a chromosomal contact. Using MAP-C, we show that inducible interchromosomal pairing between HAS1pr-TDA1pr alleles in saturated cultures of Saccharomyces yeast is mediated by three transcription factors, Leu3, Sdd4 (Ypr022c), and Rgt1. The coincident, combined binding of all three factors is strongest at the HAS1pr-TDA1pr locus and is also specific to saturated conditions. We applied MAP-C to further explore the biochemical mechanism of these contacts, and find they require the structured regulatory domain of Rgt1, but no known interaction partners of Rgt1. Altogether, our results demonstrate MAP-C as a powerful method for dissecting the mechanistic basis of chromosome conformation.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Maitreya J Dunham
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jay Shendure
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
11
|
Welkenhuysen N, Schnitzer B, Österberg L, Cvijovic M. Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways. Front Physiol 2019; 9:1964. [PMID: 30719010 PMCID: PMC6348271 DOI: 10.3389/fphys.2018.01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Systems biology approaches provide means to study the interplay between biological processes leading to the mechanistic understanding of the properties of complex biological systems. Here, we developed a vector format rule-based Boolean logic model of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better understand the role of crosstalk on network robustness and function. We identified that phosphatases are the common unknown components of the network and that crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient sensing events. The model was simulated with known crosstalk combinations and subsequent analysis led to the identification of characteristics and impact of pathway interconnections. Our results revealed that the interconnections between the Snf1 and Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our approach contributes to the understanding of the function and importance of crosstalk in nutrient signaling.
Collapse
Affiliation(s)
- Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Barbara Schnitzer
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genet 2018; 14:e1007511. [PMID: 30044771 PMCID: PMC6078315 DOI: 10.1371/journal.pgen.1007511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/06/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene. SclB function is antagonistic to VosA, because it induces the expression of early activator genes of asexual differentiation as flbC and flbD as well as brlA. The SclB controlled network promotes asexual development and spore viability, but is independent of the fungal light control. SclB interactions with the RcoA transcriptional repressor subunit suggest additional inhibitory functions on transcription. SclB links asexual spore formation to the synthesis of secondary metabolites including emericellamides, austinol as well as dehydroaustinol and activates the oxidative stress response of the fungus. The fungal VosA-SclB regulatory system of transcription includes a VosA control of the sclB promoter, common and opposite VosA and SclB control functions of fungal development and several additional regulatory genes. The relationship between VosA and SclB illustrates the presence of a convoluted surveillance apparatus of transcriptional control, which is required for accurate fungal development and the linkage to the appropriate secondary metabolism. Velvet domain proteins of filamentous fungi are structurally similar to Rel-homology domains of mammalian NF-κB proteins. Velvet and NF-κB proteins control regulatory circuits of downstream transcriptional networks for cellular differentiation, survival and stress responses. Velvet proteins interconnect developmental programs with secondary metabolism in fungi. The velvet protein VosA binds to more than ten percent of the Aspergillus nidulans promoters and is important for the spatial and temporal control of asexual spore formation from conidiophores. A novel VosA-dependent genetic network has been identified and is controlled by the zinc cluster protein SclB. Although zinc cluster proteins constitute one of the most abundant classes of transcription factors in fungi, only a small amount is characterized. SclB is a repression target of VosA and both transcription factors are part of a mutual control in the timely adjusted choreography of asexual sporulation in A. nidulans. SclB acts at the interphase of asexual development and secondary metabolism and interconnects both programs with an adequate oxidative stress response. This study underlines the complexity of different hierarchical levels of the fungal velvet protein transcriptional network for developmental programs and interconnected secondary metabolism.
Collapse
|
13
|
Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. mBio 2018; 9:mBio.00840-18. [PMID: 29921666 PMCID: PMC6016232 DOI: 10.1128/mbio.00840-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.
Collapse
|
14
|
Isom DG, Page SC, Collins LB, Kapolka NJ, Taghon GJ, Dohlman HG. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. J Biol Chem 2017; 293:2318-2329. [PMID: 29284676 DOI: 10.1074/jbc.ra117.000422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes.
Collapse
Affiliation(s)
- Daniel G Isom
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365, .,the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Stephani C Page
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| | - Leonard B Collins
- the Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7432
| | - Nicholas J Kapolka
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Geoffrey J Taghon
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Henrik G Dohlman
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365,
| |
Collapse
|
15
|
Adamczyk M, Szatkowska R. Low RNA Polymerase III activity results in up regulation of HXT2 glucose transporter independently of glucose signaling and despite changing environment. PLoS One 2017; 12:e0185516. [PMID: 28961268 PMCID: PMC5621690 DOI: 10.1371/journal.pone.0185516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Saccharomyces cerevisiae responds to glucose availability in the environment, inducing the expression of the low-affinity transporters and high-affinity transporters in a concentration dependent manner. This cellular decision making is controlled through finely tuned communication between multiple glucose sensing pathways including the Snf1-Mig1, Snf3/Rgt2-Rgt1 (SRR) and cAMP-PKA pathways. Results We demonstrate the first evidence that RNA Polymerase III (RNAP III) activity affects the expression of the glucose transporter HXT2 (RNA Polymerase II dependent—RNAP II) at the level of transcription. Down-regulation of RNAP III activity in an rpc128-1007 mutant results in a significant increase in HXT2 mRNA, which is considered to respond only to low extracellular glucose concentrations. HXT2 expression is induced in the mutant regardless of the growth conditions either at high glucose concentration or in the presence of a non-fermentable carbon source such as glycerol. Using chromatin immunoprecipitation (ChIP), we found an increased association of Rgt1 and Tup1 transcription factors with the highly activated HXT2 promoter in the rpc128-1007 strain. Furthermore, by measuring cellular abundance of Mth1 corepressor, we found that in rpc128-1007, HXT2 gene expression was independent from Snf3/Rgt2-Rgt1 (SRR) signaling. The Snf1 protein kinase complex, which needs to be active for the release from glucose repression, also did not appear perturbed in the mutated strain. Conclusions/Significance These findings suggest that the general activity of RNAP III can indirectly affect the RNAP II transcriptional machinery on the HXT2 promoter when cellular perception transduced via the major signaling pathways, broadly recognized as on/off switch essential to either positive or negative HXT gene regulation, remain entirely intact. Further, Rgt1/Ssn6-Tup1 complex, which has a dual function in gene transcription as a repressor-activator complex, contributes to HXT2 transcriptional activation.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- * E-mail:
| | - Roza Szatkowska
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
16
|
Snowdon C, Johnston M. A novel role for yeast casein kinases in glucose sensing and signaling. Mol Biol Cell 2016; 27:3369-3375. [PMID: 27630263 PMCID: PMC5170868 DOI: 10.1091/mbc.e16-05-0342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
The yeast casein kinases function upstream of the glucose sensors in the sensor/receptor-repressor signaling pathway. The sensor Rgt2 undergoes Yck-dependent phosphorylation on its C-terminal tail, which is necessary for Mth1 and Std1 binding and downstream signaling. Yeasts have sophisticated signaling pathways for sensing glucose, their preferred carbon source, to regulate its uptake and metabolism. One of these is the sensor/receptor-repressor (SRR) pathway, which detects extracellular glucose and transmits an intracellular signal that induces expression of HXT genes. The yeast casein kinases (Ycks) are key players in this pathway. Our model of the SRR pathway had the Ycks functioning downstream of the glucose sensors, transmitting the signal from the sensors to the Mth1 and Std1 corepressors that are required for repression of HXT gene expression. However, we found that overexpression of Yck1 fails to restore glucose signaling in a glucose sensor mutant. Conversely, overexpression of a glucose sensor suppresses the signaling defect of a yck mutant. These results suggest that the Ycks act upstream or at the level of the glucose sensors. Indeed, we found that the glucose sensor Rgt2 is phosphorylated on Yck consensus sites in its C-terminal tail in a Yck-dependent manner and that this phosphorylation is required for corepressor binding and ultimately HXT expression. This leads to a revised model of the SRR pathway in which the Ycks prime a site on the cytoplasmic tails of the glucose sensors to promote binding of the corepressors.
Collapse
Affiliation(s)
- Chris Snowdon
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Mark Johnston
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
17
|
Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim JH. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell 2016; 27:862-71. [PMID: 26764094 PMCID: PMC4803311 DOI: 10.1091/mbc.e15-11-0789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023] Open
Abstract
Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG inhibits the growth of glucose-fermenting yeast cells by inhibiting glycolysis. MG does so by inducing endocytosis and degradation of the cell-surface glucose sensors Rgt2 and Snf3, which are required for glucose induction of HXT (glucose transporter) gene expression. Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Salman Hashmi
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Zerui Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Angela D Dement
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| |
Collapse
|
18
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
19
|
Nijland JG, Vos E, Shin HY, de Waal PP, Klaassen P, Driessen AJM. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:158. [PMID: 27468310 PMCID: PMC4962381 DOI: 10.1186/s13068-016-0573-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/14/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein degradation. Therefore, in the absence of glucose or when the glucose is exhausted from the medium, some Hxt proteins with high xylose transport capacity are rapidly degraded and removed from the cytoplasmic membrane. Thus, turnover of such Hxt proteins may lead to poor growth on solely xylose. RESULTS The low affinity hexose transporters Hxt1, Hxt36 (Hxt3 variant), and Hxt5 are subjected to catabolite degradation as evidenced by a loss of GFP fused hexose transporters from the membrane upon glucose depletion. Catabolite degradation occurs through ubiquitination, which is a major signaling pathway for turnover. Therefore, N-terminal lysine residues of the aforementioned Hxt proteins predicted to be the target of ubiquitination, were replaced for arginine residues. The mutagenesis resulted in improved membrane localization when cells were grown on solely xylose concomitantly with markedly stimulated growth on xylose. The mutagenesis also improved the late stages of sugar fermentation when cells are grown on both glucose and xylose. CONCLUSIONS Substitution of N-terminal lysine residues in the endogenous hexose transporters Hxt1 and Hxt36 that are subjected to catabolite degradation results in improved retention at the cytoplasmic membrane in the absence of glucose and causes improved xylose fermentation upon the depletion of glucose and when cells are grown in d-xylose alone.
Collapse
Affiliation(s)
- Jeroen G. Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Erwin Vos
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Hyun Yong Shin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| |
Collapse
|
20
|
Baccarini L, Martínez-Montañés F, Rossi S, Proft M, Portela P. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1329-39. [DOI: 10.1016/j.bbagrm.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
21
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
22
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Roy A, Dement AD, Cho KH, Kim JH. Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1). PLoS One 2015; 10:e0121985. [PMID: 25816250 PMCID: PMC4376911 DOI: 10.1371/journal.pone.0121985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/06/2015] [Indexed: 01/01/2023] Open
Abstract
The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not incorporated into the hxt null strain lacking all glucose transporter genes and that this defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the putative glucose-binding residues, inferred from the alignment of yeast and human glucose transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus, 2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose transport system. Hxt1 is internalized and targeted to the vacuole for degradation in response to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a critical residue for the stability and function of Hxt1.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, NW, Washington, D. C., 20037, United States of America
| | - Angela D. Dement
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1015 Life Science Circle, Blacksburg, Virginia 24061, United States of America
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, 200N 7th St, Terre Haute, Indiana 47809, United States of America
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, NW, Washington, D. C., 20037, United States of America
- * E-mail:
| |
Collapse
|
24
|
Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C. Investigation of Geotrichum candidum gene expression during the ripening of Reblochon-type cheese by reverse transcription-quantitative PCR. Int J Food Microbiol 2014; 194:54-61. [PMID: 25461609 DOI: 10.1016/j.ijfoodmicro.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.
Collapse
Affiliation(s)
- Jessie Castellote
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | | | - Françoise Irlinger
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; AgroParisTech, UMR1319 Micalis, 78850 Thiverval-Grignon, France
| | - Frédéric Fer
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; INRA, UMR518 Mathématiques et Informatique Appliquées, 75005 Paris, France
| | - Pascal Bonnarme
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Christophe Monnet
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France.
| |
Collapse
|
25
|
Roy A, Kim YB, Cho KH, Kim JH. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta Gen Subj 2014; 1840:2878-85. [PMID: 24821015 DOI: 10.1016/j.bbagen.2014.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose regulation of the low affinity, high capacity glucose transporter Hxt1. METHODS AND RESULTS Western blotting and confocal microscopy were performed to evaluate glucose regulation of the stability of Hxt1. Our results show that glucose starvation induces endocytosis and degradation of Hxt1 and that this event requires End3, a protein required for endocytosis, and the Doa4 deubiquitination enzyme. Mutational analysis of the lysine residues in the Hxt1 N-terminal domain demonstrates that the two lysine residues, K12 and K39, serve as the putative ubiquitin-acceptor sites by the Rsp5 ubiquitin ligase. We also demonstrate that inactivation of PKA (cAMP-dependent protein kinase A) is needed for Hxt1 turnover, implicating the role of the Ras/cAMP-PKA glucose signaling pathway in the stability of Hxt1. CONCLUSION AND GENERAL SIGNIFICANCE Hxt1, most useful when glucose is abundant, is internalized and degraded when glucose becomes depleted. Of note, the stability of Hxt1 is regulated by PKA, known as a positive regulator for glucose induction of HXT1 gene expression, demonstrating a dual role of PKA in regulation of Hxt1.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - Yong-Bae Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA.
| |
Collapse
|
26
|
Roy A, Jouandot D, Cho KH, Kim JH. Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. FEBS Open Bio 2014; 4:105-11. [PMID: 24490134 PMCID: PMC3907687 DOI: 10.1016/j.fob.2013.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/05/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
The yeast Rgt1 repressor inhibits transcription of the glucose transporter (HXT) genes in the absence of glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA) and dissociates from the HXT promoters, resulting in expression of HXT genes. In this study, using Rgt1 chimeras that bind DNA constitutively, we investigate how glucose regulates Rgt1 function. Our results show that the DNA-bound Rgt1 constructs repress expression of the HXT1 gene in conjunction with Ssn6-Tup1 and Mth1, and that this repression is lifted when they dissociate from Ssn6-Tup1 in high glucose conditions. Mth1 mediates the interaction between the Rgt1 constructs and Ssn6-Tup1, and glucose-induced downregulation of Mth1 enables PKA to phosphorylate the Rgt1 constructs. This phosphorylation induces dissociation of Ssn6-Tup1 from the DNA-bound Rgt1 constructs, resulting in derepression of HXT gene expression. Therefore, Rgt1 removal from DNA occurs in response to glucose but is not necessary for glucose induction of HXT gene expression, suggesting that glucose regulates Rgt1 function by primarily modulating the Rgt1 interaction with Ssn6-Tup1. Rgt1 represses gene expression by recruiting Ssn6-Tup1 to its target promoters. Dissociation of Rgt1 from DNA is not required to lift Rgt1-mediated repression. Rgt1 dissociation from Ssn6-Tup1 is sufficient for derepression of its target genes.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | - David Jouandot
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406, USA
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| |
Collapse
|
27
|
Kim JH, Roy A, Jouandot D, Cho KH. The glucose signaling network in yeast. Biochim Biophys Acta Gen Subj 2013; 1830:5204-10. [PMID: 23911748 DOI: 10.1016/j.bbagen.2013.07.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|