1
|
Ai L, de Freitas Germano J, Huang C, Aniag M, Sawaged S, Sin J, Thakur R, Rai D, Rainville C, Sterner DE, Song Y, Piplani H, Kumar S, Butt TR, Mentzer RM, Stotland A, Gottlieb RA, Van Eyk JE. Enhanced Parkin-mediated mitophagy mitigates adverse left ventricular remodelling after myocardial infarction: role of PR-364. Eur Heart J 2025; 46:380-393. [PMID: 39601359 PMCID: PMC11745530 DOI: 10.1093/eurheartj/ehae782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/17/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND AIMS Almost 30% of survivors of myocardial infarction (MI) develop heart failure (HF), in part due to damage caused by the accumulation of dysfunctional mitochondria. Organelle quality control through Parkin-mediated mitochondrial autophagy (mitophagy) is known to play a role in mediating protection against HF damage post-ischaemic injury and remodelling of the subsequent deteriorated myocardium. METHODS This study has shown that a single i.p. dose (2 h post-MI) of the selective small molecule Parkin activator PR-364 reduced mortality, preserved cardiac ejection fraction, and mitigated the progression of HF. To reveal the mechanism of PR-364, a multi-omic strategy was deployed in combination with classical functional assays using in vivo MI and in vitro cardiomyocyte models. RESULTS In vitro cell data indicated that Parkin activation by PR-364 increased mitophagy and mitochondrial biogenesis, enhanced adenosine triphosphate production via improved citric acid cycle, altered accumulation of calcium localization to the mitochondria, and initiated translational reprogramming with increased expression of mitochondrial translational proteins. In mice, PR-364 administered post-MI resulted in widespread proteome changes, indicating an up-regulation of mitochondrial metabolism and mitochondrial translation in the surviving myocardium. CONCLUSIONS This study demonstrates the therapeutic potential of targeting Parkin-mediated mitophagy using PR-364 to protect surviving cardiac tissue post-MI from progression to HF.
Collapse
Affiliation(s)
- Lizhuo Ai
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Juliana de Freitas Germano
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Chengqun Huang
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Marianne Aniag
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Savannah Sawaged
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Jon Sin
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Reetu Thakur
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Deepika Rai
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | | | - David E Sterner
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Yang Song
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
| | - Honit Piplani
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Suresh Kumar
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Robert M Mentzer
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Aleksandr Stotland
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Wang Y, Liu Y, Su X, Niu L, Li N, Xu C, Sun Z, Guo H, Shen S, Yu M. Non-pathogenic Trojan horse Nissle1917 triggers mitophagy through PINK1/Parkin pathway to discourage colon cancer. Mater Today Bio 2024; 29:101273. [PMID: 39415764 PMCID: PMC11480251 DOI: 10.1016/j.mtbio.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteria-mediated antitumor therapy has gained widespread attention for its innate tumor-targeting capability and excellent immune activation properties. Nevertheless, the clinical approval of bacterial therapies remains elusive primarily due to the formidable challenge of balancing safety with enhancing in vivo efficacy. In this study, leveraging the probiotic Escherichia coli Nissle1917 (EcN) emerges as a promising approach for colon cancer therapy, offering a high level of safety attributed to its lack of virulence factors and its tumor-targeting potential owing to its obligate anaerobic nature. Specifically, we delineate the erythrocyte (RBC) membrane-camouflaged EcN, termed as Trojan horse EcN@RBC, which triggers apoptosis in tumor cells by mitigating mitochondrial membrane potential (MMP) and subsequently activating the PINK1/Parkin pathway associated with mitophagy. Concurrently, the decline in MMP induced by mitophagy disrupts the mitochondrial permeability transition pore (MPTP), leading to the release of Cytochrome C and subsequent apoptosis induction. Moreover, synergistic effects were observed through the combination of the autophagy activator rapamycin, bolstering the antitumor efficacy in vivo. These findings offer novel insights into probiotic-mediated antitumor mechanisms and underscore the therapeutic potential of EcN@RBC for colon cancer patients.
Collapse
Affiliation(s)
- Yang Wang
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Yao Liu
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaomin Su
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Lili Niu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Nannan Li
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Ce Xu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Zanya Sun
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
3
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
4
|
Moretti-Horten DN, Peselj C, Taskin AA, Myketin L, Schulte U, Einsle O, Drepper F, Luzarowski M, Vögtle FN. Synchronized assembly of the oxidative phosphorylation system controls mitochondrial respiration in yeast. Dev Cell 2024; 59:1043-1057.e8. [PMID: 38508182 DOI: 10.1016/j.devcel.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.
Collapse
Affiliation(s)
- Daiana N Moretti-Horten
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carlotta Peselj
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Biochemistry & Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Network Aging Research, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Busto JV, Ganesan I, Mathar H, Steiert C, Schneider EF, Straub SP, Ellenrieder L, Song J, Stiller SB, Lübbert P, Chatterjee R, Elsaesser J, Melchionda L, Schug C, den Brave F, Schulte U, Klecker T, Kraft C, Fakler B, Becker T, Wiedemann N. Role of the small protein Mco6 in the mitochondrial sorting and assembly machinery. Cell Rep 2024; 43:113805. [PMID: 38377000 DOI: 10.1016/j.celrep.2024.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The majority of mitochondrial precursor proteins are imported through the Tom40 β-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for β-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Mathar
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva F Schneider
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ritwika Chatterjee
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Schug
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
7
|
Zhai X, Bai J, Xu W, Yang X, Jia Z, Xia W, Wu X, Liang Q, Li B, Jia N. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1677-1698. [PMID: 37294615 DOI: 10.1111/tpj.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Arabidopsis mitochondria-targeted heat shock protein 70 (mtHSC70-1) plays important roles in the establishment of cytochrome c oxidase-dependent respiration and redox homeostasis during the vegetative growth of plants. Here, we report that knocking out the mtHSC70-1 gene led to a decrease in plant fertility; the fertility defect of the mutant was completely rescued by introducing the mtHSC70-1 gene. mtHSC70-1 mutants also showed defects in female gametophyte (FG) development, including delayed mitosis, abnormal nuclear position, and ectopic gene expression in the embryo sacs. In addition, we found that an Arabidopsis mitochondrial J-protein gene (DjA30) mutant, j30+/- , had defects in FG development and fertility similar to those of mtHSC70-1 mutant. mtHSC70-1 and DjA30 had similar expression patterns in FGs and interacted in vivo, suggesting that these two proteins might cooperate during female gametogenesis. Further, respiratory chain complex IV activity in mtHSC70-1 and DjA30 mutant embryo sacs was markedly downregulated; this led to the accumulation of mitochondrial reactive oxygen species (ROS). Scavenging excess ROS by introducing Mn-superoxide dismutase 1 or catalase 1 gene into the mtHSC70-1 mutant rescued FG development and fertility. Altogether, our results suggest that mtHSC70-1 and DjA30 are essential for the maintenance of ROS homeostasis in the embryo sacs and provide direct evidence for the roles of ROS homeostasis in embryo sac maturation and nuclear patterning, which might determine the fate of gametic and accessory cells.
Collapse
Affiliation(s)
- Xiaoting Zhai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenyan Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiujuan Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zichao Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxuan Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqing Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 2023; 614:153-159. [PMID: 36697829 PMCID: PMC9892010 DOI: 10.1038/s41586-022-05641-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
Collapse
Affiliation(s)
- Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin S Müller
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeannine Engelke
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Swadha Mishra
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christoph Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MTIP, Basel, Switzerland
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis, Basel, Switzerland
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Sanofi-Aventis (Suisse), Vernier, Switzerland
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bogusz Kulawiak
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation, Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Song J, Steidle L, Steymans I, Singh J, Sanner A, Böttinger L, Winter D, Becker T. The mitochondrial Hsp70 controls the assembly of the F 1F O-ATP synthase. Nat Commun 2023; 14:39. [PMID: 36596815 PMCID: PMC9810599 DOI: 10.1038/s41467-022-35720-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.
Collapse
Affiliation(s)
- Jiyao Song
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liesa Steidle
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Anne Sanner
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Correia B, Sousa MI, Branco AF, Rodrigues AS, Ramalho-Santos J. Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. Int J Mol Sci 2022; 23:ijms232214286. [PMID: 36430764 PMCID: PMC9694364 DOI: 10.3390/ijms232214286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Filipa Branco
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Sofia Rodrigues
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis. Cell Rep 2022; 40:111204. [PMID: 35977508 DOI: 10.1016/j.celrep.2022.111204] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Electron transport chain (ETC) biogenesis is tightly coupled to energy levels and availability of ETC subunits. Complex III (CIII), controlling ubiquinol:ubiquinone ratio in ETC, is an attractive node for modulating ETC levels during metabolic stress. Here, we report the discovery of mammalian Co-ordinator of mitochondrial CYTB (COM) complexes that regulate the stepwise CIII biogenesis in response to nutrient and nuclear-encoded ETC subunit availability. The COMA complex, consisting of UQCC1/2 and membrane anchor C16ORF91, facilitates translation of CIII enzymatic core subunit CYTB. Subsequently, microproteins SMIM4 and BRAWNIN together with COMA subunits form the COMB complex to stabilize nascent CYTB. Finally, UQCC3-containing COMC facilitates CYTB hemylation and association with downstream CIII subunits. Furthermore, when nuclear CIII subunits are limiting, COMB is required to chaperone nascent CYTB to prevent OXPHOS collapse. Our studies highlight CYTB synthesis as a key regulatory node of ETC biogenesis and uncover the roles of microproteins in maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Chao Liang
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Shan Zhang
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore; Department of Biochemistry, Department of Cardiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David Robinson
- Department of Biochemistry and Pharmacology, the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3052, Australia
| | - Matthew Vander Ploeg
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Rebecca Wilson
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Jiemin Nah
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Dale Taylor
- Department of Biochemistry and Pharmacology, the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3052, Australia
| | - Sheryl Beh
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Radiance Lim
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - David A Stroud
- Department of Biochemistry and Pharmacology, the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, the Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Lena Ho
- Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Dr, 138673 Singapore, Singapore.
| |
Collapse
|
12
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
13
|
Priesnitz C, Böttinger L, Zufall N, Gebert M, Guiard B, van der Laan M, Becker T. Coupling to Pam16 differentially controls the dual role of Pam18 in protein import and respiratory chain formation. Cell Rep 2022; 39:110619. [PMID: 35385740 DOI: 10.1016/j.celrep.2022.110619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Böttinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
14
|
Multiparametric MRI identifies subtle adaptations for demarcation of disease transition in murine aortic valve stenosis. Basic Res Cardiol 2022; 117:29. [PMID: 35643805 PMCID: PMC9148878 DOI: 10.1007/s00395-022-00936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023]
Abstract
Aortic valve stenosis (AS) is the most frequent valve disease with relevant prognostic impact. Experimental model systems for AS are scarce and comprehensive imaging techniques to simultaneously quantify function and morphology in disease progression are lacking. Therefore, we refined an acute murine AS model to closely mimic human disease characteristics and developed a high-resolution magnetic resonance imaging (MRI) approach for simultaneous in-depth analysis of valvular, myocardial as well as aortic morphology/pathophysiology to identify early changes in tissue texture and critical transition points in the adaptive process to AS. AS was induced by wire injury of the aortic valve. Four weeks after surgery, cine loops, velocity, and relaxometry maps were acquired at 9.4 T to monitor structural/functional alterations in valve, aorta, and left ventricle (LV). In vivo MRI data were subsequently validated by histology and compared to echocardiography. AS mice exhibited impaired valve opening accompanied by significant valve thickening due to fibrotic remodelling. While control mice showed bell-shaped flow profiles, AS resulted not only in higher peak flow velocities, but also in fragmented turbulent flow patterns associated with enhanced circumferential strain and an increase in wall thickness of the aortic root. AS mice presented with a mild hypertrophy but unaffected global LV function. Cardiac MR relaxometry revealed reduced values for both T1 and T2 in AS reflecting subtle myocardial tissue remodelling with early alterations in mitochondrial function in response to the enhanced afterload. Concomitantly, incipient impairments of coronary flow reserve and myocardial tissue integrity get apparent accompanied by early troponin release. With this, we identified a premature transition point with still compensated cardiac function but beginning textural changes. This will allow interventional studies to explore early disease pathophysiology and novel therapeutic targets.
Collapse
|
15
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
16
|
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, He H, Lu B, Song Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep 2021; 22:e50827. [PMID: 33314701 PMCID: PMC7788456 DOI: 10.15252/embr.202050827] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhida Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Meiling Zuo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Ling Zeng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Bing Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Chaojun Yan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Li Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Jun Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Fugen Shangguan
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wanglai Hu
- School of Basic Medical ScienceAnhui Medical UniversityHefeiAnhuiChina
| | - He He
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Bin Lu
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyin Song
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| |
Collapse
|
17
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
18
|
Kolli R, Engstler C, Akbaş Ş, Mower JP, Soll J, Carrie C. The OXA2a Insertase of Arabidopsis Is Required for Cytochrome c Maturation. PLANT PHYSIOLOGY 2020; 184:1042-1055. [PMID: 32759271 PMCID: PMC7536658 DOI: 10.1104/pp.19.01248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/28/2020] [Indexed: 06/02/2023]
Abstract
In yeast (Saccharomyces cerevisiae) and human (Homo sapiens) mitochondria, Oxidase assembly protein1 (Oxa1) is the general insertase for protein insertion from the matrix side into the inner membrane while Cytochrome c oxidase assembly protein18 (Cox18/Oxa2) is specifically involved in the topogenesis of the complex IV subunit, Cox2. Arabidopsis (Arabidopsis thaliana) mitochondria contain four OXA homologs: OXA1a, OXA1b, OXA2a, and OXA2b. OXA2a and OXA2b are unique members of the Oxa1 superfamily, in that they possess a tetratricopeptide repeat (TPR) domain at their C termini. Here, we determined the role of OXA2a by studying viable mutant plants generated by partial complementation of homozygous lethal OXA2a transfer-DNA insertional mutants using the developmentally regulated ABSCISIC ACID INSENSITIVE3 (ABI3) promoter. The ABI3p:OXA2a plants displayed growth retardation due to a reduction in the steady-state abundances of both c-type cytochromes, cytochrome c 1 and cytochrome c The observed reduction in the steady-state abundance of complex III could be attributed to cytochrome c 1 being one of its subunits. Expression of a soluble heme lyase from an organism with cytochrome c maturation system III could functionally complement the lack of OXA2a. This implies that OXA2a is required for the system I cytochrome c maturation of Arabidopsis. Due to the interaction of OXA2a with Cytochrome c maturation protein CcmF C-terminal-like protein (CCMFC) in a yeast split-ubiquitin based interaction assay, we propose that OXA2a aids in the membrane insertion of CCMFC, which is presumed to form the heme lyase component of the cytochrome c maturation pathway. In contrast with the crucial role played by the TPR domain of OXA2b, the TPR domain of OXA2a is not essential for its functionality.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Carina Engstler
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Şebnem Akbaş
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
19
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
20
|
Wang Y, Liu Y, Chen E, Pan Z. The role of mitochondrial dysfunction in mesenchymal stem cell senescence. Cell Tissue Res 2020; 382:457-462. [DOI: 10.1007/s00441-020-03272-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
|
21
|
Wu D, Wang D, Hong J. Effect of a Novel Alpha/Beta Hydrolase Domain Protein on Tolerance of K. marxianus to Lignocellulosic Biomass Derived Inhibitors. Front Bioeng Biotechnol 2020; 8:844. [PMID: 32850717 PMCID: PMC7396682 DOI: 10.3389/fbioe.2020.00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023] Open
Abstract
The multiple inhibitors tolerance of microorganism is important in bioconversion of lignocellulosic biomass which is a promising renewable and sustainable source for biofuels and other chemicals. The disruption of an unknown α/β hydrolase, which was termed KmYME and located in mitochondria in this study, resulted in the yeast more susceptible to lignocellulose-derived inhibitors, particularly to acetic acid, furfural and 5-HMF. The KmYME disrupted strain lost more mitochondrial membrane potential, showed increased plasma membrane permeability, severer redox ratio imbalance, and increased ROS accumulation, compared with those of the non-disrupted strain in the presence of the same inhibitors. The intracellular concentration of ATP, NAD and NADP in the KmYME disrupted strain was decreased. However, disruption of KmYME did not result in a significant change of gene expression at the transcriptional level. The KmYME possessed esterase/thioesterase activity which was necessary for the resistance to inhibitors. In addition, KmYME was also required for the resistance to other stresses including ethanol, temperature, and osmotic pressure. Disruption of two possible homologous genes in S. cerevisiae also reduced its tolerance to inhibitors.
Collapse
Affiliation(s)
- Dan Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, China
| |
Collapse
|
22
|
Lee JH, Yoon YM, Song K, Noh H, Lee SH. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell 2020; 19:e13111. [PMID: 31965731 PMCID: PMC7059143 DOI: 10.1111/acel.13111] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a popular cell source for stem cell‐based therapy. However, continuous ex vivo expansion to acquire large amounts of MSCs for clinical study induces replicative senescence, causing decreased therapeutic efficacy in MSCs. To address this issue, we investigated the effect of melatonin on replicative senescence in MSCs. In senescent MSCs (late passage), replicative senescence decreased mitophagy by inhibiting mitofission, resulting in the augmentation of mitochondrial dysfunction. Treatment with melatonin rescued replicative senescence by enhancing mitophagy and mitochondrial function through upregulation of heat shock 70 kDa protein 1L (HSPA1L). More specifically, we found that melatonin‐induced HSPA1L binds to cellular prion protein (PrPC), resulting in the recruitment of PrPC into the mitochondria. The HSPA1L‐PrPC complex then binds to COX4IA, which is a mitochondrial complex IV protein, leading to an increase in mitochondrial membrane potential and anti‐oxidant enzyme activity. These protective effects were blocked by knockdown of HSPA1L. In a murine hindlimb ischemia model, melatonin‐treated senescent MSCs enhanced functional recovery by increasing blood flow perfusion, limb salvage, and neovascularization. This study, for the first time, suggests that melatonin protects MSCs against replicative senescence during ex vivo expansion for clinical application via mitochondrial quality control.
Collapse
Affiliation(s)
- Jun Hee Lee
- Medical Science Research Institute Soonchunhyang University Seoul Hospital Seoul Korea
- Departments of Biochemistry Soonchunhyang University College of Medicine Cheonan Korea
| | - Yeo Min Yoon
- Medical Science Research Institute Soonchunhyang University Seoul Hospital Seoul Korea
| | - Keon‐Hyoung Song
- Department of Pharmaceutical Engineering College of Medical Science Soonchunhyang University Asan Korea
| | - Hyunjin Noh
- Department of Internal Medicine Soonchunhyang University Seoul Korea
- Hyonam Kidney Laboratory Soonchunhyang University Seoul Korea
| | - Sang Hun Lee
- Medical Science Research Institute Soonchunhyang University Seoul Hospital Seoul Korea
- Departments of Biochemistry Soonchunhyang University College of Medicine Cheonan Korea
| |
Collapse
|
23
|
Feng X, Zhang H, Shi M, Chen Y, Yang T, Fan H. Toxic effects of hydrogen sulfide donor NaHS induced liver apoptosis is regulated by complex IV subunits and reactive oxygen species generation in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:322-332. [PMID: 31680430 DOI: 10.1002/tox.22868] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the protective effect of hydrogensulfide donor sodium hydrosulfide(NaHS) on multiple organs has been widely reported. The study aimed to explorethe effect of commonly used concentration of NaHS on theliver and its potential damage mechanism. Rats divided into 4 groups: control, NaHS I (1 mg/kg), II (3 mg/kg) and III(5 mg/kg) groups, and each group is divided into four-timepoints (2, 6, 12, and 24 hours). Results showed that H2S concentration increased, mitochondrial complex IV activity inhibited, the COX I and IV subunits and mitochondrial apoptosis pathway-related proteins expression increased in atime- and dose-dependent manner. We confirmed that 1 mg/kg NaHS had no injuryeffect on the liver, 3 and 5 mg/kg NaHS inhibitsthe activity of mitochondrial complex IV by promoting COX I and IV subunits expression, leading to the increase in ROS and ultimately inducing apoptosis and liver injury.
Collapse
Affiliation(s)
- Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxian Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
|
25
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
26
|
Wei SS, Niu WT, Zhai XT, Liang WQ, Xu M, Fan X, Lv TT, Xu WY, Bai JT, Jia N, Li B. Arabidopsis mtHSC70-1 plays important roles in the establishment of COX-dependent respiration and redox homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5575-5590. [PMID: 31384929 DOI: 10.1093/jxb/erz357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/20/2019] [Indexed: 05/16/2023]
Abstract
The 70 kDa heat shock proteins function as molecular chaperones and are involved in diverse cellular processes. However, the functions of the plant mitochondrial HSP70s (mtHSC70s) remain unclear. Severe growth defects were observed in the Arabidopsis thaliana mtHSC70-1 knockout lines, mthsc70-1a and mthsc70-1b. Conversely, the introduction of the mtHSC70-1 gene into the mthsc70-1a background fully reversed the phenotypes, indicating that mtHSC70-1 is essential for plant growth. The loss of mtHSC70-1 functions resulted in abnormal mitochondria and alterations to respiration because of an inhibition of the cytochrome c oxidase (COX) pathway and the activation of the alternative respiratory pathway. Defects in COX assembly were observed in the mtHSC70-1 knockout lines, leading to decreased COX activity. The mtHSC70-1 knockout plants have increased levels of reactive oxygen species (ROS). The introduction of the Mn-superoxide dismutase 1 (MSD1) or the catalase 1 (CAT1) gene into the mthsc70-1a plants decreased ROS levels, reduced the expression of alternative oxidase, and partially rescued growth. Taken together, our data suggest that mtHSC70-1 plays important roles in the establishment of COX-dependent respiration.
Collapse
Affiliation(s)
- Shan-Shan Wei
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wei-Tao Niu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- College of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - Xiao-Ting Zhai
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wei-Qian Liang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Meng Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiao Fan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ting-Ting Lv
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wen-Yan Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiao-Teng Bai
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
27
|
Kolli R, Soll J, Carrie C. OXA2b is Crucial for Proper Membrane Insertion of COX2 during Biogenesis of Complex IV in Plant Mitochondria. PLANT PHYSIOLOGY 2019; 179:601-615. [PMID: 30487140 PMCID: PMC6426407 DOI: 10.1104/pp.18.01286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved YidC/Oxa1/Alb3 proteins are involved in the insertion of membrane proteins in all domains of life. In plant mitochondria, individual knockouts of OXA1a, OXA2a, and OXA2b are embryo-lethal. In contrast to other members of the protein family, OXA2a and OXA2b contain a tetratricopeptide repeat (TPR) domain at the C-terminus. Here, the role of Arabidopsis (Arabidopsis thaliana) OXA2b was determined by using viable mutant plants that were generated by complementing homozygous lethal OXA2b T-DNA insertional mutants with a C-terminally truncated OXA2b lacking the TPR domain. The truncated-OXA2b-complemented plants displayed severe growth retardation due to a strong reduction in the steady-state abundance and enzyme activity of the mitochondrial respiratory chain complex IV. The TPR domain of OXA2b directly interacts with cytochrome c oxidase subunit 2, aiding in efficient membrane insertion and translocation of its C-terminus. Thus, OXA2b is crucial for the biogenesis of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
28
|
Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1435934. [PMID: 30533169 PMCID: PMC6250043 DOI: 10.1155/2018/1435934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic and regulated organelles that historically have been defined based on their crucial role in cell metabolism. However, they are implicated in a variety of other important functions, making mitochondrial dysfunction an important axis in several pathological contexts. Despite that conventional biochemical and molecular biology approaches have provided significant insight into mitochondrial functionality, innovative techniques that provide a global view of the mitochondrion are still necessary. Proteomics fulfils this need by enabling accurate, systems-wide quantitative analysis of protein abundance. More importantly, redox proteomics approaches offer unique opportunities to tackle oxidative stress, a phenomenon that is intimately linked to aging, cardiovascular disease, and cancer. In addition, cutting-edge proteomics approaches reveal how proteins exert their functions in complex interaction networks where even subtle alterations stemming from early pathological states can be monitored. Here, we describe the proteomics approaches that will help to deepen the role of mitochondria in health and disease by assessing not only changes to mitochondrial protein composition but also alterations to their redox state and how protein interaction networks regulate mitochondrial function and dynamics. This review is aimed at showing the reader how the application of proteomics approaches during the last 20 years has revealed crucial mitochondrial roles in the context of aging, neurodegenerative disorders, metabolic disease, and cancer.
Collapse
|
29
|
Abstract
Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
30
|
Rajasekaran R, Felser A, Nuoffer JM, Dufour JF, St-Pierre MV. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism. FASEB J 2018; 32:5143-5161. [PMID: 29913563 DOI: 10.1096/fj.201701429r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histidine triad nucleotide-binding protein 2 (HINT-2) is a mitochondrial adenosine phosphoramidase expressed in hepatocytes. The phenotype of Hint2 knockout ( Hint2-/-) mice includes progressive hepatic steatosis and lysine hyperacetylation of mitochondrial proteins, which are features of respiratory chain malfunctions. We postulated that the absence of HINT-2 induces a defect in mitochondria bioenergetics. Isolated Hint2-/- hepatocytes produced less ATP and generated a lower mitochondrial membrane potential than did Hint2+/+ hepatocytes. In extracellular flux analyses with glucose, the basal, ATP-linked, and maximum oxygen consumption rates (OCRs) were decreased in Hint2-/- hepatocytes and in HepG2 cells lacking HINT-2. Conversely, in HINT-2 overexpressing SNU-449 and HepG2 cells, the basal, ATP-linked, and maximum OCRs were increased. Similarly, with palmitate, basal and maximum OCRs were decreased in Hint2-/- hepatocytes, but they were increased in HINT-2 overexpressing HepG2 cells. When assayed with radiolabeled substrate, palmitate oxidation was reduced by 25% in Hint2-/- mitochondria. In respirometry assays, complex I- and II-driven, coupled and uncoupled respirations and complex IV KCN-sensitive respiration were reduced in Hint2-/- mitochondria. Furthermore, HINT-2 associated with cardiolipin and glucose-regulated protein 75 kDa. Our study shows decreased electron transfer and oxidative phosphorylation capacity in the absence of HINT-2. The bioenergetics deficit accumulated over time in hepatocytes lacking HINT-2 likely leads to the secondary outcome of steatosis.-Rajasekaran, R., Felser, A., Nuoffer, J.-M., Dufour, J.-F., St-Pierre, M. V. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
Collapse
Affiliation(s)
| | - Andrea Felser
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland; and
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland; and
| | - Jean-François Dufour
- Department of Biomedical Research, University of Bern, Bern, Switzerland.,University Clinic of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - Marie V St-Pierre
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Böttinger L, Mårtensson CU, Song J, Zufall N, Wiedemann N, Becker T. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol Biol Cell 2018; 29:776-785. [PMID: 29386296 PMCID: PMC5905291 DOI: 10.1091/mbc.e17-09-0555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cytochrome bc1 complex and cytochrome c oxidase associate in respiratory chain supercomplexes. We identified a specific association of the iron–sulfur cluster biogenesis desulfurase with the respiratory chain supercomplexes. Our finding reveals a novel link between respiration and iron–sulfur cluster formation. Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.
Collapse
Affiliation(s)
- Lena Böttinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
32
|
Qian P, Yan LJ, Li YQ, Yang HT, Duan HY, Wu JT, Fan XW, Wang SL. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med 2017; 15:1959-1965. [PMID: 29434790 PMCID: PMC5776514 DOI: 10.3892/etm.2017.5617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and apoptosis serve an essential role in cisplatin-induced cardiotoxicity, which limits its clinical use, and increases the risk of cardiovascular disease. As a natural drug, the antioxidant and antitumor effects of cyanidin have been recognized, but its protective effect on cisplatin-induced cardiomyocyte cytotoxicity remains unclear. H9c2 cells were treated with cisplatin (1–40 µM) in the presence or absence of cyanidin (40–80 µM), subsequently; oxidative stress, apoptosis and mitochondrial function were assessed using several techniques. The results demonstrated that cyanidin was able to dose-dependently reverse cisplatin-induced cell damage and apoptosis, attenuate the accumulation of reactive oxygen species (ROS), and mitochondrial membrane potential depolarization, downregulate the expression of Bcl-2 homologous antagonist/killer, upregulate the expression of apoptosis regulator Bcl-2, and reduce the activation of caspase 3, caspase 9, but not caspase 8. Furthermore, the results revealed that the translocation of apoptosis regulator Bax (Bax) from the cytoplasm to the mitochondrial membrane serves an essential role in cisplatin-induced apoptosis. Cyanidin was able to block the translocation of Bax and reduce the release of cytochrome c from cytoplasm. These data indicate that cyanidin attenuates cisplatin-induced cardiotoxicity by inhibiting ROS-mediated apoptosis, while the mitochondrial and extracellular regulated kinase signaling pathways may also serve important roles.
Collapse
Affiliation(s)
- Peng Qian
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li-Jie Yan
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yong-Qiang Li
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hai-Tao Yang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hong-Yan Duan
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jin-Tao Wu
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xian-Wei Fan
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shan-Ling Wang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
33
|
Gong Y, Guo H, Zhang Z, Zhou H, Zhao R, He B. Heat Stress Reduces Sperm Motility via Activation of Glycogen Synthase Kinase-3α and Inhibition of Mitochondrial Protein Import. Front Physiol 2017; 8:718. [PMID: 29018353 PMCID: PMC5615227 DOI: 10.3389/fphys.2017.00718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
The adverse effects of high environmental temperature exposure on animal reproductive functions have been concerned for many decades. However, the molecular basis of heat stress (HS)-induced decrease of sperm motility has not been entirely elucidated. We hypothesized that the deteriorate effects of HS may be mediated by damage of mitochondrial function and ATP synthesis. To test this hypothesis, we use mature boar sperm as model to explore the impacts of HS on mitochondrial function and sperm motility. A 6 h exposure to 42°C (HS) induced significant decrease in sperm progressive motility. Concurrently, HS induced mitochondrial dysfunction that is indicated by decreased of membrane potential, respiratory chain complex I and IV activities and adenosine triphosphate (ATP) contents. Exogenous ATP abolished this effect suggesting that reduced of ATP synthesis is the committed step in HS-induced reduction of sperm motility. At the molecular level, the mitochondrial protein contents were significantly decreased in HS sperm. Notably, the cytochrome c oxidase subunit 4, which was synthesized in cytoplasm and translocated into mitochondria, was significantly lower in mitochondria of HS sperm. Glycogen synthase kinase-3α (GSK3α), a negative regulator of sperm motility that is inactivated by Ser21 phosphorylation, was dephosphorylated after HS. The GSK3α inhibitor CHIR99021 was able to abolish the effects of HS on sperm and their mitochondria. Taken together, our results demonstrate that HS affects sperm motility through downregulation of mitochondrial activity and ATP synthesis yield, which involves dephosphorylation of GSK3α and interference of mitochondrial remodeling.
Collapse
Affiliation(s)
- Yabin Gong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Huiduo Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Zhilong Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Hao Zhou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing, China
| |
Collapse
|
34
|
Singhal RK, Kruse C, Heidler J, Strecker V, Zwicker K, Düsterwald L, Westermann B, Herrmann JM, Wittig I, Rapaport D. Coi1 is a novel assembly factor of the yeast complex III-complex IV supercomplex. Mol Biol Cell 2017; 28:mbc.E17-02-0093. [PMID: 28794267 PMCID: PMC5620370 DOI: 10.1091/mbc.e17-02-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023] Open
Abstract
The yeast bc1 complex (complex III) and cytochrome oxidase (complex IV) are mosaics of core subunits encoded by the mitochondrial genome and additional nuclear-encoded proteins imported from the cytosol. Both complexes build in the mitochondrial inner membrane various supramolecular assemblies. The formation of the individual complexes and their supercomplexes depends on the activity of dedicated assembly factors. We identified a so far uncharacterized mitochondrial protein (open reading frame YDR381C-A) as an important assembly factor for complex III, complex IV, and their supercomplexes. Therefore, we named this protein Cox interacting (Coi) 1. Deletion of COI1 results in decreased respiratory growth, reduced membrane potential, and hampered respiration, as well as slow fermentative growth at low temperature. In addition, coi1Δ cells harbour reduced steady-state levels of subunits of complexes III and IV as well as of the assembled complexes and supercomplexes. Interaction of Coi1 with respiratory chain subunits seems transient, as it appears to be a stoichiometric subunit neither of complex III nor of complex IV. Collectively, this work identifies a novel protein that plays a role in the assembly of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Ravi K Singhal
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Christine Kruse
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lea Düsterwald
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
- Cluster of Excellence "Macromolecular Complexes", Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
35
|
SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability. G3-GENES GENOMES GENETICS 2017; 7:1861-1873. [PMID: 28404662 PMCID: PMC5473764 DOI: 10.1534/g3.117.041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.
Collapse
|
36
|
The proteome of baker's yeast mitochondria. Mitochondrion 2017; 33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
|
37
|
Schuler MH, Di Bartolomeo F, Mårtensson CU, Daum G, Becker T. Phosphatidylcholine Affects Inner Membrane Protein Translocases of Mitochondria. J Biol Chem 2016; 291:18718-29. [PMID: 27402832 DOI: 10.1074/jbc.m116.722694] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 01/31/2023] Open
Abstract
Two protein translocases transport precursor proteins into or across the inner mitochondrial membrane. The presequence translocase (TIM23 complex) sorts precursor proteins with a cleavable presequence either into the matrix or into the inner membrane. The carrier translocase (TIM22 complex) inserts multispanning proteins into the inner membrane. Both protein import pathways depend on the presence of a membrane potential, which is generated by the activity of the respiratory chain. The non-bilayer-forming phospholipids cardiolipin and phosphatidylethanolamine are required for the activity of the respiratory chain and therefore to maintain the membrane potential for protein import. Depletion of cardiolipin further affects the stability of the TIM23 complex. The role of bilayer-forming phospholipids like phosphatidylcholine (PC) in protein transport into the inner membrane and the matrix is unknown. Here, we report that import of presequence-containing precursors and carrier proteins is impaired in PC-deficient mitochondria. Surprisingly, depletion of PC does not affect stability and activity of respiratory supercomplexes, and the membrane potential is maintained. Instead, the dynamic TIM23 complex is destabilized when the PC levels are reduced, whereas the TIM22 complex remains intact. Our analysis further revealed that initial precursor binding to the TIM23 complex is impaired in PC-deficient mitochondria. We conclude that reduced PC levels differentially affect the TIM22 and TIM23 complexes in mitochondrial protein transport.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine
| | - Francesca Di Bartolomeo
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Christoph U Mårtensson
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Faculty of Biology, and
| | - Günther Daum
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany and
| |
Collapse
|
38
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
39
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
40
|
Böttinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 2015; 290:11611-22. [PMID: 25792736 DOI: 10.1074/jbc.m115.642017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.
Collapse
Affiliation(s)
- Lena Böttinger
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie
| | - Silke Oeljeklaus
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Bernard Guiard
- the Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Sabine Rospert
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the BIOSS Centre for Biological Signalling Studies, and
| | - Bettina Warscheid
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Thomas Becker
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie, the BIOSS Centre for Biological Signalling Studies, and
| |
Collapse
|
41
|
Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 2015; 6:e1642. [PMID: 25675302 PMCID: PMC4669791 DOI: 10.1038/cddis.2015.9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/31/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023]
Abstract
Human Lon protease is a mitochondrial matrix protein with several functions, including protein degradation, mitochondrial DNA (mtDNA) binding, and chaperone activity. Lon is currently emerging as an important regulator of mitochondria-contributed tumorigenesis due to its overexpression in cancer cells. To understand the mechanism of increased Lon in tumor cells, we studied the interactome to identify the chaperone Lon-associated proteins by proteomics approaches using the cells overexpressing Lon. In the present study, we designed a method connecting co-immunoprecipitation (Co-IP) to in-solution digestion for the shotgun mass spectrometry. We identified 76 proteins that were putative Lon-associated proteins that participated in mitochondrial chaperone system, cellular metabolism and energy, cell death and survival, and mtDNA stability. The association between Lon and NDUFS8 or Hsp60-mtHsp70 complex was confirmed by Co-IP and immunofluorescence co-localization assay. We then found that the protein stability/level of Hsp60-mtHsp70 complex depends on the level of Lon under oxidative stress. Most importantly, the ability of increased Lon-inhibited apoptosis is dependent on Hsp60 that binds p53 to inhibit apoptosis. These results suggest that the mechanism underlying cell survival regulated by Lon is mediated by the maintenance of the protein stability of Hsp60-mtHsp70 complex. This new knowledge of chaperone Lon interactome will allow us to better understand the cellular mechanism of Lon in mitochondrial function and of its overexpression in enhancing cell survival and tumorigenesis.
Collapse
|