1
|
Pollard LW, Boczkowska M, Dominguez R, Ostap EM. Myosin-1C differentially displaces tropomyosin isoforms altering their inhibition of motility. J Biol Chem 2024; 300:107539. [PMID: 38971309 PMCID: PMC11338116 DOI: 10.1016/j.jbc.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Force generation and motility by actomyosin in nonmuscle cells are spatially regulated by ∼40 tropomyosin (Tpm) isoforms. The means by which Tpms are targeted to specific cellular regions and the mechanisms that result in differential activity of myosin paralogs are unknown. We show that Tpm3.1 and Tpm1.7 inhibit Myosin-IC (Myo1C), with Tpm1.7 more effectively reducing the number of gliding filaments than Tpm3.1. Strikingly, cosedimentation and fluorescence microscopy assays revealed that Tpm3.1 is displaced from actin by Myo1C and not by myosin-II. In contrast, Tpm1.7 is only weakly displaced by Myo1C. Unlike other characterized myosins, Myo1C motility is inhibited by Tpm when the Tpm-actin filament is activated by myosin-II. These results point to a mechanism for the exclusion of myosin-I paralogs from cellular Tpm-decorated actin filaments that are activated by other myosins. Additionally, our results suggest a potential mechanism for myosin-induced Tpm sorting in cells.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Malgorzata Boczkowska
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - E Michael Ostap
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
3
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
4
|
Mamun MAA, Katayama T, Cao W, Nakamura S, Maruyama JI. A novel Pezizomycotina-specific protein with gelsolin domains regulates contractile actin ring assembly and constriction in perforated septum formation. Mol Microbiol 2020; 113:964-982. [PMID: 31965663 DOI: 10.1111/mmi.14463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.
Collapse
Affiliation(s)
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Wei Cao
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
6
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Mitchell CB, Stehn JR, O'Neill GM. Small molecule targeting of the actin associating protein tropomyosin Tpm3.1 increases neuroblastoma cell response to inhibition of Rac‐mediated multicellular invasion. Cytoskeleton (Hoboken) 2018; 75:307-317. [DOI: 10.1002/cm.21452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Camilla B. Mitchell
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
| | - Justine R. Stehn
- Novogen Pty LtdHornsby NSW Australia
- School of Medical SciencesUniversity of New South Wales AustraliaSydney NSW Australia
| | - Geraldine M. O'Neill
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
- Discipline of Paediatrics and Child HealthThe University of SydneySydney New South Wales Australia
| |
Collapse
|
8
|
Barua B, Sckolnick M, White HD, Trybus KM, Hitchcock-DeGregori SE. Distinct sites in tropomyosin specify shared and isoform-specific regulation of myosins II and V. Cytoskeleton (Hoboken) 2018; 75:150-163. [PMID: 29500902 PMCID: PMC5899941 DOI: 10.1002/cm.21440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
Muscle contraction, cytokinesis, cellular movement, and intracellular transport depend on regulated actin-myosin interaction. Most actin filaments bind one or more isoform of tropomyosin, a coiled-coil protein that stabilizes the filaments and regulates interactions with other actin-binding proteins, including myosin. Isoform-specific allosteric regulation of muscle myosin II by actin-tropomyosin is well-established while that of processive myosins, such as myosin V, which transport organelles and macromolecules in the cell periphery, is less certain. Is the regulation by tropomyosin a universal mechanism, the consequence of the conserved periodic structures of tropomyosin, or is it the result of specialized interactions between particular isoforms of myosin and tropomyosin? Here, we show that striated muscle tropomyosin, Tpm1.1, inhibits fast skeletal muscle myosin II but not myosin Va. The non-muscle tropomyosin, Tpm3.1, in contrast, activates both myosins. To decipher the molecular basis of these opposing regulatory effects, we introduced mutations at conserved surface residues within the six periodic repeats (periods) of Tpm3.1, in positions homologous or analogous to those important for regulation of skeletal muscle myosin by Tpm1.1. We identified conserved residues in the internal periods of both tropomyosin isoforms that are important for the function of myosin Va and striated myosin II. Conserved residues in the internal and C-terminal periods that correspond to Tpm3.1-specific exons inhibit myosin Va but not myosin II function. These results suggest that tropomyosins may directly impact myosin function through both general and isoform-specific mechanisms that identify actin tracks for the recruitment and function of particular myosins.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Maria Sckolnick
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Howard D. White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Kathleen M. Trybus
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Sarah E. Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
9
|
Gunning PW, Hardeman EC. Tropomyosin-directed tuning of myosin motor function: Insights from mutagenesis. Cytoskeleton (Hoboken) 2018. [DOI: 10.1002/cm.21441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- P. W. Gunning
- School of Medical Sciences; UNSW; Sydney New South Wales 2052 Australia
| | - E. C. Hardeman
- School of Medical Sciences; UNSW; Sydney New South Wales 2052 Australia
| |
Collapse
|
10
|
Rynkiewicz MJ, Prum T, Hollenberg S, Kiani FA, Fagnant PM, Marston SB, Trybus KM, Fischer S, Moore JR, Lehman W. Tropomyosin Must Interact Weakly with Actin to Effectively Regulate Thin Filament Function. Biophys J 2018; 113:2444-2451. [PMID: 29211998 DOI: 10.1016/j.bpj.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/13/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Elongated tropomyosin, associated with actin-subunits along the surface of thin filaments, makes electrostatic interactions with clusters of conserved residues, K326, K328, and R147, on actin. The association is weak, permitting low-energy cost regulatory movement of tropomyosin across the filament during muscle activation. Interestingly, acidic D292 on actin, also evolutionarily conserved, lies adjacent to the three-residue cluster of basic amino acids and thus may moderate the combined local positive charge, diminishing tropomyosin-actin interaction and facilitating regulatory-switching. Indeed, charge neutralization of D292 is connected to muscle hypotonia in individuals with D292V actin mutations and linked to congenital fiber-type disproportion. Here, the D292V mutation may predispose tropomyosin-actin positioning to a myosin-blocking state, aberrantly favoring muscle relaxation, thus mimicking the low-Ca2+ effect of troponin even in activated muscles. To test this hypothesis, interaction energetics and in vitro function of wild-type and D292V filaments were measured. Energy landscapes based on F-actin-tropomyosin models show the mutation localizes tropomyosin in a blocked-state position on actin defined by a deeper energy minimum, consistent with augmented steric-interference of actin-myosin binding. In addition, whereas myosin-dependent motility of troponin/tropomyosin-free D292V F-actin is normal, motility is dramatically inhibited after addition of tropomyosin to the mutant actin. Thus, D292V-induced blocked-state stabilization appears to disrupt the delicately poised energy balance governing thin filament regulation. Our results validate the premise that stereospecific but necessarily weak binding of tropomyosin to F-actin is required for effective thin filament function.
Collapse
Affiliation(s)
- Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Thavanareth Prum
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Stephen Hollenberg
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Farooq A Kiani
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Patricia M Fagnant
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Stefan Fischer
- Computational Biochemistry Group, IWR, Heidelberg University, Heidelberg, Germany
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
11
|
Temperature sensitive point mutations in fission yeast tropomyosin have long range effects on the stability and function of the actin-tropomyosin copolymer. Biochem Biophys Res Commun 2017; 506:339-346. [PMID: 29080743 PMCID: PMC6269162 DOI: 10.1016/j.bbrc.2017.10.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine-tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein. Cloning, expression and characterisation of fission yeast temperature sensitive tropomyosin mutants. Detailed in vitro analysis on the impact of temperature upon these mutants. Comparison with in vivo impact of mutations upon actin ring function within the fission yeast. Demonstrates that subtle changes in structure alter the long range stability of Tropomyosin containing polymers.
Collapse
|
12
|
Heissler SM, Chinthalapudi K, Sellers JR. Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. J Biol Chem 2017; 292:18372-18385. [PMID: 28882893 DOI: 10.1074/jbc.m117.801456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
Myosin-5B is a ubiquitous molecular motor that transports cargo vesicles of the endomembrane system in intracellular recycling pathways. Myosin-5B malfunction causes the congenital enteropathy microvillus inclusion disease, underlining its importance in cellular homeostasis. Here we describe the interaction of myosin-5B with F-actin, nucleotides, and the pyrazolopyrimidine compound myoVin-1. We show that single-headed myosin-5B is an intermediate duty ratio motor with a kinetic ATPase cycle that is rate-limited by the release of phosphate. The presence of a second head generates strain and gating in the myosin-5B dimer that alters the kinetic signature by reducing the actin-activated ADP release rate to become rate-limiting. This kinetic transition into a high-duty ratio motor is a prerequisite for the proposed transport function of myosin-5B in cellular recycling pathways. Moreover, we show that the small molecule compound myoVin-1 inhibits the enzymatic and functional activity of myosin-5B in vitro Partial inhibition of the actin-activated steady-state ATPase activity and sliding velocity suggests that caution should be used when probing the effect of myoVin-1 on myosin-5-dependent transport processes in cells.
Collapse
Affiliation(s)
- Sarah M Heissler
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| | - Krishna Chinthalapudi
- the Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, Scripps Research Institute, Jupiter, Florida 33458
| | - James R Sellers
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| |
Collapse
|
13
|
Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC. ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken) 2017; 74:379-389. [PMID: 28834398 DOI: 10.1002/cm.21405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4+/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lingyan Yang
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Galina Schevzov
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Dudin O, Merlini L, Bendezú FO, Groux R, Vincenzetti V, Martin SG. A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion. PLoS Genet 2017; 13:e1006721. [PMID: 28410370 PMCID: PMC5409535 DOI: 10.1371/journal.pgen.1006721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 03/29/2017] [Indexed: 01/15/2023] Open
Abstract
In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments.
Collapse
Affiliation(s)
- Omaya Dudin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Felipe O. Bendezú
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Raphaël Groux
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE, Voth GA, Kovar DR. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 2017; 6. [PMID: 28282023 PMCID: PMC5404920 DOI: 10.7554/elife.23152] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks. DOI:http://dx.doi.org/10.7554/eLife.23152.001 Cells use a protein called actin to provide shape, to generate the forces needed for cells to divide, and for many other essential processes. Inside a cell, individual actin proteins join up to form long filaments. These actin filaments are organized in different ways to make networks that have distinct properties, each tailored for a specific process. For instance, bundles of straight actin filaments help a cell to divide, whereas a network of branched actin filaments allows cells to move. The different proteins that bind to actin filaments influence how quickly actin filaments are assembled and organized into networks. Therefore, many of the properties of an actin filament network are due to the actin binding proteins that are associated with it. Two actin binding proteins called fimbrin and cofilin associate with a type of actin filament network known as the actin patch. A third actin binding protein called tropomyosin associates with a different network that forms a ring. It is not known how particular actin binding proteins choose to associate with one actin network instead of another. Christensen et al. used a fluorescence microscopy technique to study how fimbrin, cofilin and tropomyosin associate with different actin networks in a single-celled organism called fission yeast. This technique involved incubating actin and actin binding proteins together in a microscope chamber. The experiments show that some actin binding proteins, like tropomyosin, cooperate to bind to actin. Individual tropomyosin molecules find it difficult to bind actin filaments on their own, but once one tropomyosin molecule is attached to the filament, others rapidly join to coat the filament. On the other hand, some actin-binding proteins compete for binding to filaments. For example, the binding of fimbrin to actin filaments causes tropomyosin to be removed from the actin network. Further experiments revealed that fimbrin and cofilin work with each other to rapidly generate a dense actin network and displace tropomyosin. Together, the findings of Christensen et al. suggest that competitions between actin binding proteins determine which actin binding proteins are associated with an actin network. The next challenge is to understand how the most competitive actin-binding proteins are kept off actin networks where they do not belong. Further studies will shed light on how these interactions cause large changes in how the cell is organized. DOI:http://dx.doi.org/10.7554/eLife.23152.002
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States.,Computation Institute, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
16
|
Abstract
Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.
Collapse
|
17
|
Brooker HR, Geeves MA, Mulvihill DP. Analysis of biophysical and functional consequences of tropomyosin-fluorescent protein fusions. FEBS Lett 2016; 590:3111-21. [PMID: 27501521 PMCID: PMC5053231 DOI: 10.1002/1873-3468.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
The dynamic nature of actin polymers is modulated to facilitate a diverse range of cellular processes. These dynamic properties are determined by different isoforms of tropomyosin which are recruited to distinct subpopulations of actin polymers to differentially regulate their functional properties. This makes tropomyosin an attractive target for labelling discrete actin populations. We have assessed the effect of different fluorescent labelling strategies for this protein. Although tropomyosin–fluorescent fusions decorate actin in vivo, they are either nonfunctional or perturb regulation of actin nucleation and cell cycle timings. Thus, conclusions and physiological relevance should be carefully evaluated when using tropomyosin fusions.
Collapse
|
18
|
Sckolnick M, Krementsova EB, Warshaw DM, Trybus KM. Tropomyosin isoforms bias actin track selection by vertebrate myosin Va. Mol Biol Cell 2016; 27:2889-97. [PMID: 27535431 PMCID: PMC5042576 DOI: 10.1091/mbc.e15-09-0641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/04/2016] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin (Tpm) isoforms decorate actin with distinct spatial and temporal localization patterns in cells and thus may function to sort actomyosin processes by modifying the actin track affinity for specific myosin isoforms. We examined the effect of three Tpm isoforms on the ability of myosin Va (myoVa) to engage with actin in vitro in the absence or presence of the cargo adapter melanophilin (Mlph), which links myoVa to Rab27a-melanosomes for in vivo transport. We show that both the myosin motor domain and the cargo adapter Mlph, which has an actin-binding domain that acts as a tether, are sensitive to the Tpm isoform. Actin-Tpm3.1 and actin-Tpm1.8 were equal or better tracks compared to bare actin for myoVa-HMM based on event frequency, run length, and speed. The full-length myoVa-Mlph complex showed high-frequency engagement with actin-Tpm3.1 but not with actin-Tpm1.8. Actin-Tpm4.2 excluded both myoVa-HMM and full-length myoVa-Mlph from productive interactions. Of importance, Tpm3.1 is enriched in the dendritic protrusions and cortical actin of melanocytes, where myoVa-Mlph engages in melanosome transport. These results support the hypothesis that Tpm isoforms constitute an "actin-Tpm code" that allows for spatial and temporal sorting of actomyosin function in the cell.
Collapse
Affiliation(s)
- Maria Sckolnick
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
19
|
Role and organization of the actin cytoskeleton during cell-cell fusion. Semin Cell Dev Biol 2016; 60:121-126. [PMID: 27476112 DOI: 10.1016/j.semcdb.2016.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022]
Abstract
Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.
Collapse
|
20
|
Tang Q, Billington N, Krementsova EB, Bookwalter CS, Lord M, Trybus KM. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner. J Cell Biol 2016; 214:167-79. [PMID: 27432898 PMCID: PMC4949448 DOI: 10.1083/jcb.201511102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Matthew Lord
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
21
|
Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast. Methods Mol Biol 2016; 1369:137-50. [PMID: 26519311 DOI: 10.1007/978-1-4939-3145-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.
Collapse
|
22
|
Manstein DJ, Mulvihill DP. Tropomyosin-Mediated Regulation of Cytoplasmic Myosins. Traffic 2016; 17:872-7. [DOI: 10.1111/tra.12399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Dietmar J. Manstein
- Institute for Biophysical Chemistry; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
- Division for Structural Analysis; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | | |
Collapse
|
23
|
Wang N, Lee IJ, Rask G, Wu JQ. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis. PLoS Biol 2016; 14:e1002437. [PMID: 27082518 PMCID: PMC4833314 DOI: 10.1371/journal.pbio.1002437] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. Two putative vesicle tethers—the exocyst and TRAPP-II complexes—localize differently at the division plane to ensure efficient plasma-membrane deposition along the whole cleavage furrow during cytokinesis in the fission yeast Schizosaccharomyces pombe. Cytokinesis partitions a mother cell into two daughter cells at the end of each cell-division cycle. A significant amount of new plasma membrane is needed at the cleavage furrow during cytokinesis in many cell types. Membrane expansion is achieved through the balance of exocytosis and endocytosis. It is poorly understood where and when the membrane is deposited and retrieved during cytokinesis. By tracking individual vesicles with high spatiotemporal resolution and using electron microscopy, we found that new membrane is deposited relatively evenly along the cleavage furrow in fission yeast, while the rim of the division plane is the predominant site for endocytosis. The secretory vesicles/compartments carrying new membrane are mainly delivered along formin-nucleated actin cables by myosin-V motors. Surprisingly, we find that both exocytosis and endocytosis at the division site are ramped up before contractile-ring constriction and last until daughter-cell separation. We discovered that two putative vesicle tethers, the exocyst and TRAPP-II complexes, localize to different sites at the cleavage furrow to promote tethering of different, yet overlapping, classes of secretory vesicles/compartments for exocytosis and new membrane deposition.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Galen Rask
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.
Collapse
|
25
|
Hundt N, Steffen W, Pathan-Chhatbar S, Taft MH, Manstein DJ. Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Sci Rep 2016; 6:20554. [PMID: 26847712 PMCID: PMC4742800 DOI: 10.1038/srep20554] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023] Open
Abstract
Tropomyosin isoforms play an important role in the organisation of cytoplasmic actomyosin complexes in regard to function and cellular localisation. In particular, Tpm4.2 is upregulated in rapidly migrating cells and responsible for the specific recruitment of the cytoplasmic class-2 myosin NM-2A to actin filaments during the formation of stress fibres. Here, we investigate how the decoration of F-actin with Tpm4.2 affects the motor properties of NM-2A under conditions of low and high load. In the absence of external forces, decoration of actin filaments with Tpm4.2 does not affect the gated release of ADP from NM-2A and the transition from strong to weak actin-binding states. In the presence of resisting loads, our results reveal a marked increase in the mechanosensitive gating between the leading and trailing myosin head. Thereby, the processive behaviour of NM-2A is enhanced in the presence of resisting loads. The load- and Tpm4.2-induced changes in the functional behaviour of NM-2A are in good agreement with the role of this myosin in the context of stress fibres and the maintenance of cellular tension.
Collapse
Affiliation(s)
- Nikolas Hundt
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Walter Steffen
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Salma Pathan-Chhatbar
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
26
|
Cranz-Mileva S, MacTaggart B, Russell J, Hitchcock-DeGregori SE. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation. Biol Open 2015; 4:1040-51. [PMID: 26187949 PMCID: PMC4542287 DOI: 10.1242/bio.012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brittany MacTaggart
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jacquelyn Russell
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Clayton JE, Pollard LW, Murray GG, Lord M. Myosin motor isoforms direct specification of actomyosin function by tropomyosins. Cytoskeleton (Hoboken) 2015; 72:131-45. [PMID: 25712463 DOI: 10.1002/cm.21213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 11/08/2022]
Abstract
Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in nonmuscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting nonprocessive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating nonmuscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs.
Collapse
Affiliation(s)
- Joseph E Clayton
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | | | | | | |
Collapse
|
29
|
McIntosh BB, Holzbaur ELF, Ostap EM. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin. Curr Biol 2015; 25:523-9. [PMID: 25660542 DOI: 10.1016/j.cub.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Intracellular transport is largely driven by processive microtubule- and actin-based molecular motors. Nonprocessive motors have also been localized to trafficking cargos, but their roles are not well understood. Myosin-Ic (Myo1c), a nonprocessive actin motor, functions in a variety of exocytic events, although the underlying mechanisms are not yet clear. To investigate the interplay between myosin-I and the canonical long-distance transport motor kinesin-1, we attached both motor types to lipid membrane-coated bead cargo, using an attachment strategy that allows motors to actively reorganize within the membrane in response to the local cytoskeletal environment. We compared the motility of kinesin-1-driven cargos in the absence and presence of Myo1c at engineered actin/microtubule intersections. We found that Myo1c significantly increases the frequency of kinesin-1-driven microtubule-based runs that begin at actin/microtubule intersections. Myo1c also regulates the termination of processive runs. Beads with both motors bound have a significantly higher probability of pausing at actin/microtubule intersections, remaining tethered for an average of 20 s, with some pauses lasting longer than 200 s. The actin-binding protein nonmuscle tropomyosin (Tm) provides spatially specific regulation of interactions between myosin motors and actin filaments in vivo; in the crossed-filament in vitro assay, we found that Tm2-actin abolishes Myo1c-specific effects on both run initiation and run termination. Together, these observations suggest Myo1c is important for the selective initiation and termination of kinesin-1-driven runs along microtubules at specific actin filament populations within the cell.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
30
|
Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol 2014; 34:4436-46. [PMID: 25288639 DOI: 10.1128/mcb.00796-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.
Collapse
|
31
|
Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking. Proc Natl Acad Sci U S A 2014; 111:12390-5. [PMID: 25114250 DOI: 10.1073/pnas.1409459111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin-specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end-directed motor that moves actin filaments in a gliding assay (∼ 430 nm · s(-1) at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (k(cat) ∼ 6 s(-1)) was similar to the actin-detachment rate (k(det) = 6.2 s(-1)) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells.
Collapse
|
32
|
Tang H, Laporte D, Vavylonis D. Actin cable distribution and dynamics arising from cross-linking, motor pulling, and filament turnover. Mol Biol Cell 2014; 25:3006-16. [PMID: 25103242 PMCID: PMC4230589 DOI: 10.1091/mbc.e14-05-0965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A computational model of actin cables in fission yeast is presented that includes polymerization, severing, cross-linking, and motor pulling. Results reproduce observations in wild-type cells and cells lacking myosin V and are compared to images of cells overexpressing α-actinin. Formin clustering at cell tips is predicted to promote cable formation. The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation.
Collapse
Affiliation(s)
- Haosu Tang
- Department of Physics, Lehigh University, Bethlehem, PA 18015
| | - Damien Laporte
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | | |
Collapse
|
33
|
Barua B, Nagy A, Sellers JR, Hitchcock-DeGregori SE. Regulation of nonmuscle myosin II by tropomyosin. Biochemistry 2014; 53:4015-24. [PMID: 24873380 PMCID: PMC4075986 DOI: 10.1021/bi500162z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
actin cytoskeleton carries out cellular functions, including
division, migration, adhesion, and intracellular transport, that require
a variety of actin binding proteins, including myosins. Our focus
here is on class II nonmuscle myosin isoforms, NMIIA, NMIIB, and NMIIC,
and their regulation by the actin binding protein, tropomyosin. NMII
myosins are localized to different populations of stress fibers and
the contractile ring, structures involved in force generation required
for cell migration, adhesion, and cytokinesis. The stress fibers and
contractile ring that contain NMII myosins also contain tropomyosin.
Four mammalian genes encode more than 40 tropomyosins. Tropomyosins
inhibit or activate actomyosin MgATPase and motility depending on
the myosin and tropomyosin isoform. In vivo, tropomyosins
play a role in cell migration, adhesion, cytokinesis, and NMII isoform
localization in an isoform-specific manner. We postulate that the
isoform-specific tropomyosin localization and effect on NMII isoform
localization reflect modulation of NMII actomyosin kinetics and motile
function. In this study, we compare the ability of different tropomyosin
isoforms to support actin filament motility with NMIIA, NMIIB, and
NMIIC as well as skeletal muscle myosin. Tropomyosins activated, inhibited,
or had no effect on motility depending on the myosin, indicating that
the myosin isoform is the primary determinant of the isoform-specific
effect of tropomyosin on actomyosin regulation. Activation of motility
of nonmuscle tropomyosin–actin filaments by NMII myosin correlates
with an increased Vmax of the myosin MgATPase,
implying a direct effect on the myosin MgATPase, in contrast to the
skeletal tropomyosin–actin filament that has no effect on the Vmax or maximal filament velocity.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|
34
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
35
|
Pollard LW, Lord M. Getting myosin-V on the right track: tropomyosin sorts transport in yeast. BIOARCHITECTURE 2014; 4:35-8. [PMID: 24531330 DOI: 10.4161/bioa.28204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent studies have revealed a novel mechanism of myosin regulation in which the actin-binding protein tropomyosin converts atypical type-V myosins into processive cargo transporters. To achieve this, tropomyosin's primary role appears to lie in its ability to influence myosin's enzyme kinetics, prolonging the strong actin-bound ADP/apo state to enable hand-over-hand walking of myosin-V dimers along actin tracks. Activation of myosin-V mediated transport by tropomyosin underscores its function in helping to direct cargos to specific actin tracks and subcellular destinations. This type of regulation supports the broader notion that tropomyosin plays a key role in actomyosin sorting.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Molecular Physiology & Biophysics; University of Vermont; Burlington, VT USA
| | - Matthew Lord
- Department of Molecular Physiology & Biophysics; University of Vermont; Burlington, VT USA
| |
Collapse
|