1
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
3
|
Helm M, Schmidt M, Del Duca E, Liu Y, Mortensen LS, Loui J, Zheng Y, Binder H, Guttman-Yassky E, Cotsarelis G, Simon JC, Ferrer RA. Repurposing DPP4 Inhibition to Improve Hair Follicle Activation and Regeneration. J Invest Dermatol 2023; 143:2132-2144.e15. [PMID: 37236597 DOI: 10.1016/j.jid.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Skin injury and several diseases elicit fibrosis and induce hair follicle (HF) growth arrest and loss. The resulting alopecia and disfiguration represent a severe burden for patients, both physically and psychologically. Reduction of profibrotic factors such as dipeptidyl peptidase 4 (DPP4) might be a strategy to tackle this issue. We show DPP4 overrepresentation in settings with HF growth arrest (telogen), HF loss, and nonregenerative wound areas in mouse skin and human scalp. Topical DPP4 inhibition with Food and Drug Administration/European Medicines Agency-approved sitagliptin on preclinical models of murine HF activation/regeneration results in accelerated anagen progress, whereas treatment of wounds with sitagliptin results in reduced expression of fibrosis markers, increased induction of anagen around wounds, and HF regeneration in the wound center. These effects are associated with higher expression of Wnt target Lef1, known to be required for HF anagen/HF-activation and regeneration. Sitagliptin treatment decreases profibrotic signaling in the skin, induces a differentiation trajectory of HF cells, and activates Wnt targets related to HF activation/growth but not those supporting fibrosis. Taken together, our study shows a role for DPP4 in HF biology and shows how DPP4 inhibition, currently used as oral medication to treat diabetes, could be repurposed into a topical treatment agent to potentially reverse HF loss in alopecia and after injury.
Collapse
Affiliation(s)
- Maria Helm
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Lena Sünke Mortensen
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Juliane Loui
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Ying Zheng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Rubén A Ferrer
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
5
|
The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111856. [PMID: 36430990 PMCID: PMC9693075 DOI: 10.3390/life12111856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Hair loss, or alopecia, is a dermatological disorder that causes psychological stress and poor quality of life. Drug-based therapeutics such as finasteride and minoxidil have been clinically used to treat hair loss, but they have limitations due to their several side effects in patients. To solve this problem, there has been meaningful progress in elucidating the molecular mechanisms of hair growth and finding novel targets to develop therapeutics to treat it. Among various signaling pathways, Wnt/β-catenin plays an essential role in hair follicle development, the hair cycle, and regeneration. Thus, much research has demonstrated that various natural products worldwide promote hair growth by stimulating Wnt/β-catenin signaling. This review discusses the functional role of the Wnt/β-catenin pathway and its related signaling molecules. We also review the molecular mechanism of the natural products or compounds that activate Wnt/β-catenin signaling and provide insights into developing therapeutics or cosmeceuticals that treat hair loss.
Collapse
|
6
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
7
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
8
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
9
|
Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 2021; 6:66. [PMID: 33594043 PMCID: PMC7886855 DOI: 10.1038/s41392-020-00441-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
The hair follicle (HF) is a highly conserved sensory organ associated with the immune response against pathogens, thermoregulation, sebum production, angiogenesis, neurogenesis and wound healing. Although recent advances in lineage-tracing techniques and the ability to profile gene expression in small populations of cells have increased the understanding of how stem cells operate during hair growth and regeneration, the construction of functional follicles with cycling activity is still a great challenge for the hair research field and for translational and clinical applications. Given that hair formation and cycling rely on tightly coordinated epithelial-mesenchymal interactions, we thus review potential cell sources with HF-inducive capacities and summarize current bioengineering strategies for HF regeneration with functional restoration.
Collapse
Affiliation(s)
- Shuaifei Ji
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Ziying Zhu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaoyan Sun
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaobing Fu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| |
Collapse
|
10
|
Goto T, Sapio MR, Maric D, Robinson JM, Saligan LN, Mannes AJ, Iadarola MJ. Longitudinal Transcriptomic Profiling in Carrageenan-Induced Rat Hind Paw Peripheral Inflammation and Hyperalgesia Reveals Progressive Recruitment of Innate Immune System Components. THE JOURNAL OF PAIN 2020; 22:322-343. [PMID: 33227508 DOI: 10.1016/j.jpain.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022]
Abstract
Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.
Collapse
Affiliation(s)
- Taichi Goto
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Matthew R Sapio
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Dragan Maric
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, Maryland
| | - Jeffrey M Robinson
- University of Maryland, Baltimore County, Translational Life Science Technology Program, Baltimore, Maryland
| | - Leorey N Saligan
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Andrew J Mannes
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Michael J Iadarola
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland.
| |
Collapse
|
11
|
Kong D, Yao G, Bai Y, Yang G, Xu Z, Kong Y, Fan H, He Q, Sun Y. Expression of sirtuins in ovarian follicles of postnatal mice. Mol Reprod Dev 2020; 87:1097-1108. [PMID: 32902077 DOI: 10.1002/mrd.23418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/17/2020] [Accepted: 08/15/2020] [Indexed: 01/07/2023]
Abstract
Mammalian ovarian follicular development is an intricate, elaborate, and well-organized phenomenon regulated by various signaling pathways; however, the underlying mechanism remains unclear. Mammalian sirtuins (sirtuin 1 to sirtuin 7) are a group of NAD+ -dependent deacetylases implicated in various physiological processes including cell proliferation, apoptosis, cell cycle progression, and insulin signaling. Mammalian ovarian sirtuins have been studied using adult and aged bovine, porcine, and murine models. However, limited information is available regarding their precise expression patterns and the localization of follicle development in mice. This study aimed to assess the dynamic expression and localization of all seven sirtuins in early postnatal mouse ovaries through real-time polymerase chain reaction analysis and immunohistochemistry, respectively. During postnatal ovarian follicle development, sirtuin 1, sirtuin 4, and sirtuin 6 were downregulated compared with those in 1-day postnatal mouse ovaries (p < .05), indicating that these three sirtuin genes may be markers of follicular development. Combining their localization in granulosa cells through immunohistochemical studies, sirtuin 1, sirtuin 4, and sirtuin 6 are suggested to play negative regulatory roles in mammal ovarian follicular granulosa cell development. Furthermore, we found that sirtuin 2 (p < .05) and sirtuin 7 (p < .05) mRNA were constantly upregulated relative to sirtuin 1, although limited information is available regarding sirtuin 7. Among all sirtuins in mouse ovaries, sirtuin 1 was relatively and steadily downregulated. Upon sirtuin 1 overexpression in 1-day postnatal mouse ovaries via sirtuin 1-harboring adenoviruses in vitro, the emergence of primary follicles was delayed, as was the emergence of secondary follicles in 4-day postnatal ovaries. Further studies on KGN cell lines reported that interfering with sirtuin 1 expression in granulosa cell significantly affected granulosa cell proliferation and the expression of mitochondrial genes. This study presents the first systemic analysis of dynamic patterns of sirtuin family expression in early postnatal mice ovaries, laying the foundation for further studies on less discussed sirtuin subtypes, such as sirtuin 5 and sirtuin 7.
Collapse
Affiliation(s)
- Deqi Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yucheng Bai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziwen Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiying Fan
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qina He
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. Int J Mol Sci 2020; 21:ijms21144915. [PMID: 32664659 PMCID: PMC7404278 DOI: 10.3390/ijms21144915] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Persistent hair loss is a major cause of psychological distress and compromised quality of life in millions of people worldwide. Remarkable progress has been made in understanding the molecular basis of hair loss and identifying valid intracellular targets for designing effective therapies for hair loss treatment. Whereas a variety of growth factors and signaling pathways have been implicated in hair cycling process, the activation of Wnt/β-catenin signaling plays a central role in hair follicle regeneration. Several plant-derived chemicals have been reported to promote hair growth by activating Wnt/β-catenin signaling in various in vitro and in vivo studies. This mini-review sheds light on the role of Wnt/β-catenin in promoting hair growth and the current progress in designing hair loss therapies by targeting this signaling pathway.
Collapse
|
13
|
Ramovs V, Krotenberg Garcia A, Song JY, de Rink I, Kreft M, Goldschmeding R, Sonnenberg A. Integrin α3β1 in hair bulge stem cells modulates CCN2 expression and promotes skin tumorigenesis. Life Sci Alliance 2020; 3:3/7/e202000645. [PMID: 32423907 PMCID: PMC7240742 DOI: 10.26508/lsa.202000645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Although hair bulge stem cells are not the cancer cells-of-origin, they contribute to two-stage DMBA/TPA skin carcinogenesis in an α3β1-dependent manner. Epidermal-specific deletion of integrin α3β1 almost completely prevents the formation of papillomas during 7,12-Dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) two-stage skin carcinogenesis. This dramatic decrease in tumorigenesis was thought to be due to an egress and premature differentiation of α3β1-depleted hair bulge (HB) stem cells (SCs), previously considered to be the cancer cells-of-origin in the DMBA/TPA model. Using a reporter mouse line with inducible deletion of α3β1 in HBs, we show that HB SCs remain confined to their niche regardless of the presence of α3β1 and are largely absent from skin tumors. However, tumor formation was significantly decreased in mice deficient for α3β1 in HB SCs. RNA sequencing of HB SCs isolated from short-term DMBA/TPA–treated skin showed α3β1-dependent expression of the matricellular protein connective tissue growth factor (CCN2), which was confirmed in vitro, where CCN2 promoted colony formation and 3D growth of transformed keratinocytes. Together, these findings show that HBs contribute to skin tumorigenesis in an α3β1-dependent manner and suggest a role of HB SCs in creating a permissive environment for tumor growth through the modulation of CCN2 secretion.
Collapse
Affiliation(s)
- Veronika Ramovs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Toda N, Yokoi H, Mori K, Mukoyama M. Production and Analysis of Conditional KO Mice of CCN2 in Kidney. Methods Mol Biol 2017; 1489:377-390. [PMID: 27734390 DOI: 10.1007/978-1-4939-6430-7_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CCN2 has been shown to be closely involved in the progression of renal fibrosis, indicating the potential of CCN2 inhibition as a therapeutic target. Although the examination of the phenotypes of adult CCN2 knockout mice with renal diseases has yielded valuable scientific insights, perinatal death has limited studies of CCN2 in vivo. Conditional knockout technology has become widely used for the deletion of genes in the desired cell populations and time points through the use of cell-specific Cre recombinase-expressing mice. Accordingly, several lines of CCN2 floxed mice have been developed for the assessment of the functional role of CCN2 in adult mice.CCN2 levels are increased in renal fibrosis and proliferative glomerulonephritis, which represent good disease models for evaluating the effects of CCN2 deletion on the kidney. Of these, anti-glomerular basement membrane antibody glomerulonephritis has become the most widely used model for evaluating the effect of increased renal CCN2 expression. Herein, we describe the construction of CCN2 floxed mice and inducible systemic CCN2 conditional knockout mice and methods for the induction of anti-glomerular basement membrane antibody glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Kiyoshi Mori
- School of Phamaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
15
|
Wang Q, Oh JW, Lee HL, Dhar A, Peng T, Ramos R, Guerrero-Juarez CF, Wang X, Zhao R, Cao X, Le J, Fuentes MA, Jocoy SC, Rossi AR, Vu B, Pham K, Wang X, Mali NM, Park JM, Choi JH, Lee H, Legrand JMD, Kandyba E, Kim JC, Kim M, Foley J, Yu Z, Kobielak K, Andersen B, Khosrotehrani K, Nie Q, Plikus MV. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. eLife 2017; 6:22772. [PMID: 28695824 PMCID: PMC5610035 DOI: 10.7554/elife.22772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/29/2017] [Indexed: 01/27/2023] Open
Abstract
The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States
| | - Ji Won Oh
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Anukriti Dhar
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Tao Peng
- Department of Mathematics, University of California, Irvine, United States
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Ran Zhao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoling Cao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jonathan Le
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Melisa A Fuentes
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Shelby C Jocoy
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Antoni R Rossi
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Brian Vu
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Kim Pham
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaoyang Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Nanda Maya Mali
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Min Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - June-Hyug Choi
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsu Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Korea
| | - Julien M D Legrand
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Eve Kandyba
- Department of Pathology, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
| | - Jung Chul Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Moonkyu Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - John Foley
- Department of Dermatology, Medical Sciences Program, Indiana University School of Medicine, Bloomington, United States
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Krzysztof Kobielak
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Centre of New Technologies, CeNT, University of Warsaw, Warsaw, Poland
| | - Bogi Andersen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Departments of Medicine and Biological Chemistry, University of California, Irvine, United States
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States, (QN)
| | - Maksim V Plikus
- Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States, (MVP)
| |
Collapse
|
16
|
Oral biosciences: The annual review 2015. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Pi L, Jorgensen M, Oh SH, Protopapadakis Y, Gjymishka A, Brown A, Robinson P, Liu C, Scott EW, Schultz GS, Petersen BE. A disintegrin and metalloprotease with thrombospondin type I motif 7: a new protease for connective tissue growth factor in hepatic progenitor/oval cell niche. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1552-1563. [PMID: 25843683 PMCID: PMC4450322 DOI: 10.1016/j.ajpath.2015.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatic progenitor/oval cell (OC) activation occurs when hepatocyte proliferation is inhibited and is tightly associated with the fibrogenic response during severe liver damage. Connective tissue growth factor (CTGF) is important for OC activation and contributes to the pathogenesis of liver fibrosis. By using the Yeast Two-Hybrid approach, we identified a disintegrin and metalloproteinase with thrombospondin repeat 7 (ADAMTS7) as a CTGF binding protein. In vitro characterization demonstrated CTGF binding and processing by ADAMTS7. Moreover, Adamts7 mRNA was induced during OC activation, after the implantation of 2-acetylaminofluorene with partial hepatectomy in rats or on feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet in mice. X-Gal staining showed Adamts7 expression in hepatocyte nuclear factor 4α(+) hepatocytes and desmin(+) myofibroblasts surrounding reactive ducts in DDC-treated Adamts7(-/-) mice carrying a knocked-in LacZ gene. Adamts7 deficiency was associated with higher transcriptional levels of Ctgf and OC markers and enhanced OC proliferation compared to Adamts7(+/+) controls during DDC-induced liver injury. We also observed increased α-smooth muscle actin and procollagen type I mRNAs, large fibrotic areas in α-smooth muscle actin and Sirius red staining, and increased production of hepatic collagen by hydroxyproline measurement. These results suggest that ADAMTS7 is a new protease for CTGF protein and a novel regulator in the OC compartment, where its absence causes CTGF accumulation, leading to increased OC activation and biliary fibrosis.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | | | - Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Alicia Brown
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Paulette Robinson
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, New York
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Kubota S, Maeda-Uematsu A, Nishida T, Takigawa M. New functional aspects of CCN2 revealed by trans-omic approaches. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 2014; 128:181-96. [DOI: 10.1042/cs20140264] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CCN family protein 2 (CCN2), also widely known as connective tissue growth factor (CTGF), is one of the founding members of the CCN family of matricellular proteins. Extensive investigation on CCN2 over decades has revealed the novel molecular action and functional properties of this unique signalling modulator. By its interaction with multiple molecular counterparts, CCN2 yields highly diverse and context-dependent biological outcomes in a variety of microenvironments. Nowadays, CCN2 is recognized to conduct the harmonized development of relevant tissues, such as cartilage and bone, in the skeletal system, by manipulating extracellular signalling molecules involved therein by acting as a hub through a web. However, on the other hand, CCN2 occasionally plays profound roles in major human biological disorders, including fibrosis and malignancies in major organs and tissues, by modulating the actions of key molecules involved in these clinical entities. In this review, the physiological and pathological roles of this unique protein are comprehensively summarized from a molecular network-based viewpoint of CCN2 functionalities.
Collapse
|
20
|
Zhang P, Ravuri SK, Wang J, Marra KG, Kling RE, Chai J. Exogenous connective tissue growth factor preserves the hair-inductive ability of human dermal papilla cells. Int J Cosmet Sci 2014; 36:442-50. [PMID: 24925376 DOI: 10.1111/ics.12146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023]
Abstract
Connective tissue growth factor influences human dermal papilla cells' hair inductive ability through several signaling pathways.
Collapse
Affiliation(s)
- P Zhang
- Medical School of Chinese People's Liberation Army, #28 Fuxing Road, Haidian District, Beijing, 100853, China; Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, #51 Fucheng Road, Haidian District, Beijing, 100048, China
| | | | | | | | | | | |
Collapse
|
21
|
Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol 2014; 37:1-14. [PMID: 25064829 PMCID: PMC4379989 DOI: 10.1016/j.matbio.2014.07.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
The concept of a matricellular protein was first proposed by Paul Bornstein in the mid-1990s to account for the non-lethal phenotypes of mice with inactivated genes encoding thrombospondin-1, tenascin-C, or SPARC. It was also recognized that these extracellular matrix proteins were primarily counter or de-adhesive. This review reappraises the matricellular concept after nearly two decades of continuous investigation. The expanded matricellular family as well as the diverse and often unexpected functions, cellular location, and interacting partners/receptors of matricellular proteins are considered. Development of therapeutic strategies that target matricellular proteins are discussed in the context of pathology and regenerative medicine.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | | |
Collapse
|
22
|
Liu S, Herault Y, Pavlovic G, Leask A. Skin progenitor cells contribute to bleomycin-induced skin fibrosis. Arthritis Rheumatol 2014; 66:707-13. [PMID: 24574231 DOI: 10.1002/art.38276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/07/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The origin of the cells that contribute to skin fibrosis is unclear. We undertook the present study to assess the contribution of Sox2-expressing skin progenitor cells to bleomycin-induced scleroderma. METHODS Scleroderma was induced, by bleomycin administration, in wild-type mice and in mice in which CCN2 was deleted from Sox2-expressing cells. Lineage tracing analysis was performed to assess whether cells expressing Sox2 are recruited to fibrotic lesions in response to bleomycin-induced scleroderma. RESULTS In response to bleomycin, Sox2-positive/α-smooth muscle actin-positive cells were recruited to fibrotic tissue. CCN2-conditional knockout mice in which CCN2 was deleted from Sox2-expressing cells exhibited resistance to bleomycin-induced skin fibrosis. Collectively, these results indicate that CCN2 is required for the recruitment of progenitor cells and that CCN2-expressing progenitor cells are essential for bleomycin-induced skin fibrosis. Lineage tracing analysis using mice in which a tamoxifen-dependent Cre recombinase was expressed under the control of the Sox2 promoter confirmed that progenitor cells were recruited to the fibrotic lesion in response to bleomycin, and that this did not occur in CCN2-knockout mice. The ability of serum to induce α-smooth muscle actin expression in skin progenitor cells required the presence of CCN2. CONCLUSION Sox2-positive skin progenitor cells are required in order for bleomycin-induced skin fibrosis to occur, and CCN2 is required for the recruitment of these cells to the fibrotic lesion. Targeting stem cell recruitment or CCN2 may therefore represent a useful therapeutic approach in combating fibrotic skin disease.
Collapse
Affiliation(s)
- Shangxi Liu
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|