1
|
Sunwoo IY, Ryu YK, Oh CH, Choi WY. Evaluation and Valorization of Ecological Risk Mitigation Through the Use of Sustainable Marine Resources in Ulva, a Marine Ecological Disturbance Species. BIOLOGY 2025; 14:551. [PMID: 40427741 PMCID: PMC12109118 DOI: 10.3390/biology14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
Massive blooms of Ulva species, commonly known as green tides, pose serious ecological threats by disrupting coastal ecosystems and requiring costly removal efforts. This study presents a nature-based solution by seasonally valorizing Ulva ohnoi, a bloom-forming macroalga dominant in Jeju Island, South Korea. Biomass was collected across all four seasons and subjected to phylogenetic identification, biochemical characterization, and bioresource processing. Despite environmental fluctuations, tufA-based analysis confirmed U. ohnoi as the sole species present year-round. Carbohydrate content peaked in spring (55.35%) and was lowest in summer (45.74%), corresponding to maximum reducing sugar of 36.49 g/L in winter and 36.24 g/L in spring following acid-enzymatic hydrolysis. The maximum ethanol fermentation using Saccharomyces cerevisiae produced up to 17.12 g/L ethanol in spring with a yield of 0.47 g/g. Post-fermentation residues were enzymatically hydrolyzed into Ulva Ethanol Residue Medium (UERM), which supported yeast growth and fermentation comparable to commercial YPD medium, achieving final optical densities of 8.3-8.5 and ethanol production of 16.5-16.8 g/L. Alanine, valine, and proline were the most abundant amino acids in UERM, supporting its suitability as a nitrogen source. These findings highlight the potential of integrating green tide mitigation with renewable energy and nutrient recycling through seasonal, localized biorefineries aligned with circular marine bioeconomy principles.
Collapse
Affiliation(s)
| | | | | | - Woon-Yong Choi
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (I.-Y.S.); (Y.-K.R.); (C.-H.O.)
| |
Collapse
|
2
|
Johnson Z, Wang Y, Sutter BM, Tu BP. Evidence for a hydrogen sulfide-sensing E3 ligase in yeast. Genetics 2024; 228:iyae154. [PMID: 39378345 PMCID: PMC11538405 DOI: 10.1093/genetics/iyae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program. In particular, Met30 is responsive to the biological gas hydrogen sulfide, which is sufficient to induce ubiquitination of Met4 in vivo. Additionally, we identify important cysteine residues in Met30's WD-40 repeat region that sense the availability of sulfur in the cell. Our findings reveal how SCFMet30 dynamically senses the flow of sulfur metabolites through the trans-sulfuration pathway to regulate the synthesis of these special amino acids.
Collapse
Affiliation(s)
- Zane Johnson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
3
|
Do D, Guruk M, Kus-Liśkiewicz M, Damblon C, Arguelles-Arias A, Erten H, Fickers P. Biosynthesis of the antioxidant γ-glutamyl-cysteine with engineered Yarrowia lipolytica. Biotechnol J 2024; 19:e2300564. [PMID: 38403441 DOI: 10.1002/biot.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.
Collapse
Affiliation(s)
- Diem Do
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
- Dong Thap Medical College, Cao Lanh City, Dong Thap Province, Vietnam
| | - Mümine Guruk
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | | | - Christian Damblon
- Laboratoire de Chimie Biologique Structurale, Département de Chimie, Université de Liège, Liège, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Huseyin Erten
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
4
|
Yu L, Wei Y, Lu T, Li Z, Lai S, Yan Y, Chen C, Wen W. The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback. Cell Commun Signal 2023; 21:345. [PMID: 38037054 PMCID: PMC10688075 DOI: 10.1186/s12964-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China
| | - Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
5
|
Church MC, Price A, Li H, Workman JL. The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control. Nucleic Acids Res 2023; 51:10278-10291. [PMID: 37650639 PMCID: PMC10602859 DOI: 10.1093/nar/gkad711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
In eukaryotes, ATP-dependent chromatin remodelers regulate gene expression in response to nutritional and metabolic stimuli. However, altered transcription of metabolic genes may have significant indirect consequences which are currently poorly understood. In this study, we use genetic and molecular approaches to uncover a role for the remodeler Swi-Snf as a critical regulator of metabolism. We find that snfΔ mutants display a cysteine-deficient phenotype, despite growth in nutrient-rich media. This correlates with widespread perturbations in sulfur metabolic gene transcription, including global redistribution of the sulfur-sensing transcription factor Met4. Our findings show how a chromatin remodeler can have a significant impact on a whole metabolic pathway by directly regulating an important gene subset and demonstrate an emerging role for chromatin remodeling complexes as decisive factors in metabolic control.
Collapse
Affiliation(s)
- Michael C Church
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
6
|
da Silva JP, Meneghini MR, Santos RS, Alves VL, da Cruz Martho KF, Vallim MA, Pascon RC. ATP sulfurylase atypical leucine zipper interacts with Cys3 and calcineurin A in the regulation of sulfur amino acid biosynthesis in Cryptococcus neoformans. Sci Rep 2023; 13:11694. [PMID: 37474559 PMCID: PMC10359356 DOI: 10.1038/s41598-023-37556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Fungal pathogens are a major cause of death, especially among immunocompromised patients. Therapies against invasive fungal infections are restricted to a few antifungals; therefore, novel therapies are necessary. Nutritional signaling and regulation are important for pathogen establishment in the host. In Cryptococcus neoformans, the causal agent of fungal meningitis, amino acid uptake and biosynthesis are major aspects of nutritional adaptation. Disruptions in these pathways lead to virulence attenuation in an animal model of infection, especially for sulfur uptake and sulfur amino acid biosynthesis. Deletion of Cys3, the main transcription factor that controls these pathways, is the most deleterious gene knockout in vitro and in vivo, making it an important target for further application. Previously, we demonstrated that Cys3 is part of a protein complex, including calcineurin, which is necessary to maintain high Cys3 protein levels during sulfur uptake and sulfur amino acid biosynthesis. In the current study, other aspects of Cys3 regulation are explored. Two lines of evidence suggest that C. neoformans Cys3 does not interact with the F-box WD40 protein annotated as Met30, indicating another protein mediates Cys3 ubiquitin degradation. However, we found another level of Cys3 regulation, which involves protein interactions between Cys3 and ATP sulfurylase (MET3 gene). We show that an atypical leucine zipper at the N-terminus of ATP sulfurylase is essential for physical interaction with Cys3 and calcineurin. Our data suggests that Cys3 and ATP sulfurylase interact to regulate Cys3 transcriptional activity. This work evidences the complexity involved in the regulation of a transcription factor essential for the sulfur metabolism, which is a biological process important to nutritional adaptation, oxidative stress response, nucleic acid stability, and methylation. This information may be useful in designing novel therapies against fungal infections.
Collapse
Affiliation(s)
- Jeyson Pereira da Silva
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Mariana Reis Meneghini
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Ronaldo Silva Santos
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Verônica Lira Alves
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | | | - Marcelo Afonso Vallim
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Renata Castiglioni Pascon
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil.
| |
Collapse
|
7
|
Ianshina T, Sidorin A, Petrova K, Shubert M, Makeeva A, Sambuk E, Govdi A, Rumyantsev A, Padkina M. Effect of Methionine on Gene Expression in Komagataella phaffii Cells. Microorganisms 2023; 11:microorganisms11040877. [PMID: 37110303 PMCID: PMC10143545 DOI: 10.3390/microorganisms11040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Komagataella phaffii yeast plays a prominent role in modern biotechnology as a recombinant protein producer. For efficient use of this yeast, it is essential to study the effects of different media components on its growth and gene expression. We investigated the effect of methionine on gene expression in K. phaffii cells using RNA-seq analysis. Several gene groups exhibited altered expression when K. phaffii cells were cultured in a medium with methanol and methionine, compared to a medium without this amino acid. Methionine primarily affects the expression of genes involved in its biosynthesis, fatty acid metabolism, and methanol utilization. The AOX1 gene promoter, which is widely used for heterologous expression in K. phaffii, is downregulated in methionine-containing media. Despite great progress in the development of K. phaffii strain engineering techniques, a sensitive adjustment of cultivation conditions is required to achieve a high yield of the target product. The revealed effect of methionine on K. phaffii gene expression is important for optimizing media recipes and cultivation strategies aimed at maximizing the efficiency of recombinant product synthesis.
Collapse
Affiliation(s)
- Tatiana Ianshina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anton Sidorin
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Kristina Petrova
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Maria Shubert
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anastasiya Makeeva
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Elena Sambuk
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anastasiya Govdi
- Institute of Chemistry, Saint Petersburg State University (SPBU), Petergof, Saint Petersburg 198504, Russia
| | - Andrey Rumyantsev
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
- Correspondence: (A.R.); (M.P.)
| | - Marina Padkina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
- Correspondence: (A.R.); (M.P.)
| |
Collapse
|
8
|
Bao X, Koorengevel MC, Groot Koerkamp MJA, Homavar A, Weijn A, Crielaard S, Renne MF, Lorent JH, Geerts WJC, Surma MA, Mari M, Holstege FCP, Klose C, de Kroon AIPM. Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast. EMBO J 2021; 40:e107966. [PMID: 34520050 PMCID: PMC8521299 DOI: 10.15252/embj.2021107966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.
Collapse
Affiliation(s)
- Xue Bao
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Martijn C Koorengevel
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | | | - Amir Homavar
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Amrah Weijn
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Stefan Crielaard
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Mike F Renne
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Willie JC Geerts
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | | | - Muriel Mari
- Department of Biomedical Sciences of Cells & SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | - Anton I P M de Kroon
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
9
|
Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. mSystems 2021; 6:6/2/e00014-21. [PMID: 33727391 PMCID: PMC8546961 DOI: 10.1128/msystems.00014-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.
Collapse
|
10
|
Hansen ASL, Dunham MJ, Arsovska D, Zhang J, Keasling JD, Herrgard MJ, Jensen MK. Dietary Change Enables Robust Growth-Coupling of Heterologous Methyltransferase Activity in Yeast. ACS Synth Biol 2020; 9:3408-3415. [PMID: 33179905 DOI: 10.1021/acssynbio.0c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic modifications of living organisms and proteins are made possible by a catalogue of molecular and synthetic biology tools, yet proper screening assays for genetic variants of interest continue to lag behind. Synthetic growth-coupling (GC) of enzyme activities offers a simple, inexpensive way to track such improvements. In this follow-up study we present the optimization of a recently established GC design for screening of heterologous methyltransferases (MTases) and related pathways in the yeast Saccharomyces cerevisiae. Specifically, upon testing different media compositions and genetic backgrounds, improved GC of different heterologous MTase activities is obtained. Furthermore, we demonstrate the strength of the system by screening a library of catechol O-MTase variants converting protocatechuic acid into vanillic acid. We demonstrated high correlation (R2 = 0.775) between vanillic acid and cell density as a proxy for MTase activity. We envision that the improved MTase GC can aid evolution-guided optimization of biobased production processes for methylated compounds with yeast in the future.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Dushica Arsovska
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Markus J. Herrgard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
12
|
Song Y, Gibney P, Cheng L, Liu S, Peck G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front Microbiol 2020; 11:1264. [PMID: 32670223 PMCID: PMC7326769 DOI: 10.3389/fmicb.2020.01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The fermentation of apple juice into hard cider is a complex biochemical process that transforms sugars into alcohols by yeast, of which Saccharomyces cerevisiae is the most widely used species. Among many factors, hydrogen sulfide (H2S) production by yeast during cider fermentation is affected by yeast strain and yeast assimilable nitrogen (YAN) concentration in the apple juice. In this study, we investigated the regulatory mechanism of YAN concentration on S. cerevisiae H2S formation. Two S. cerevisiae strains, UCD522 (a H2S-producing strain) and UCD932 (a non-H2S-producing strain), were used to ferment apple juice that had Low, Intermediate, and High diammonium phosphate (DAP) supplementation. Cider samples were collected 24 and 72 h after yeast inoculation. Using RNA-Seq, differentially expressed genes (DEGs) identification and annotation, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that gene expression was dependent on yeast strain, fermentation duration, H2S formation, and the interaction of these three factors. For UCD522, under the three DAP treatments, a total of 30 specific GO terms were identified. Of the 18 identified KEGG pathways, “Sulfur metabolism,” “Glycine, serine and threonine metabolism,” and “Biosynthesis of amino acids” were significantly enriched. Both GO and KEGG analyses revealed that the “Sulfate Reduction Sequence (SRS) pathway” was significantly enriched. We also found a complex relationship between H2S production and stress response genes. For UCD522, we confirm that there is a non-linear relationship between YAN and H2S production, with the Low and Intermediate treatments having greater H2S production than the High treatment. By integrating results obtained through the transcriptomic analysis with yeast physiological data, we present a mechanistic view into the H2S production by yeast as a result of different concentrations of YAN during cider fermentation.
Collapse
Affiliation(s)
- Yangbo Song
- College of Enology, Northwest A&F University, Yangling, China.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Patrick Gibney
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Gregory Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Li Y, Wu Z, Li R, Miao Y, Weng P, Wang L. Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis. J Food Biochem 2020; 44:e13203. [PMID: 32232868 DOI: 10.1111/jfbc.13203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022]
Abstract
Issatchenkia orientalis known as a multi-tolerant non-Saccharomyces yeast, which tolerant environmental stresses, exhibits potential in wine making and bioethanol production. It is essential for the growth of I. orientalis to tolerant acetic acid in the mixed cultures with Saccharomyces cerevisiae. In this work, RNA-sequence and TMT (Tandem Mass Tag) were used to examine the comprehensive transcriptomic and proteomic profiles of I. orientalis in response to acetic acid. The results showed that 876 genes were identified differentially transcribed in I. orientalis genome and 399 proteins expressed in proteome after 4 hr acetic acid (90 mM, pH 4.5). The comprehensive analysis showed a series of determinants of acetic acid tolerance: Glycolysis and TCA cycle provide enough nicotinamide adenine dinucleotide to effectively convert acetic acid. Genes associated with potassium, iron, zinc, and glutathione synthesis were upregulated. The same changes of differentially expressed genes and proteins were mainly concentrated in chaperones, coenzyme, energy production, and transformation. PRACTICAL APPLICATIONS: In addition to the main fermentation products, wine yeast also produces metabolite acetic acid in the fermentation process, and yeast cells are exposed to acetic acid stress, which restrains cell proliferation. Issatchenkia orientalis exhibits great potential in winemaking and bioethanol production. The yeast is known as a multi-tolerant non-Saccharomyces yeast that can tolerate a variety of environmental stresses. In this study, RNA-Seq and TMT were conducted to investigate the changes in transcriptional and proteomic profile of I. orientalis under acetic acid stress. The knowledge of the transcription and expression changes of the I. orientalis is expected to understand the tolerance mechanisms in I. orientalis and to guide traditional fermentation processes by Saccharomyces cerevisiae improving its high resistance to acetic acid stress.
Collapse
Affiliation(s)
- Yingdi Li
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Ruoyun Li
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yingjie Miao
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Liping Wang
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Pawlik G, Renne MF, Kol MA, de Kroon AIPM. The topology of the ER-resident phospholipid methyltransferase Opi3 of Saccharomyces cerevisiae is consistent with in trans catalysis. J Biol Chem 2020; 295:2473-2482. [PMID: 31932304 PMCID: PMC7039565 DOI: 10.1074/jbc.ra119.011102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipid N-methyltransferases (PLMTs) synthesize phosphatidylcholine by methylating phosphatidylethanolamine using S-adenosylmethionine as a methyl donor. Eukaryotic PLMTs are integral membrane enzymes located in the endoplasmic reticulum (ER). Recently Opi3, a PLMT of the yeast Saccharomyces cerevisiae was proposed to perform in trans catalysis, i.e. while localized in the ER, Opi3 would methylate lipid substrates located in the plasma membrane at membrane contact sites. Here, we tested whether the Opi3 active site is located at the cytosolic side of the ER membrane, which is a prerequisite for in trans catalysis. The membrane topology of Opi3 (and its human counterpart, phosphatidylethanolamine N-methyltransferase, expressed in yeast) was addressed by topology prediction algorithms and by the substituted cysteine accessibility method. The results of these analyses indicated that Opi3 (as well as phosphatidylethanolamine N-methyltransferase) has an N-out C-in topology and contains four transmembrane domains, with the fourth forming a re-entrant loop. On the basis of the sequence conservation between the C-terminal half of Opi3 and isoprenyl cysteine carboxyl methyltransferases with a solved crystal structure, we identified amino acids critical for Opi3 activity by site-directed mutagenesis. Modeling of the structure of the C-terminal part of Opi3 was consistent with the topology obtained by the substituted cysteine accessibility method and revealed that the active site faces the cytosol. In conclusion, the location of the Opi3 active site identified here is consistent with the proposed mechanism of in trans catalysis, as well as with conventional catalysis in cis.
Collapse
Affiliation(s)
- Grzegorz Pawlik
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Matthijs A Kol
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
15
|
The regulation of the sulfur amino acid biosynthetic pathway in Cryptococcus neoformans: the relationship of Cys3, Calcineurin, and Gpp2 phosphatases. Sci Rep 2019; 9:11923. [PMID: 31417135 PMCID: PMC6695392 DOI: 10.1038/s41598-019-48433-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023] Open
Abstract
Cryptococcosis is a fungal disease caused by C. neoformans. To adapt and survive in diverse ecological niches, including the animal host, this opportunistic pathogen relies on its ability to uptake nutrients, such as carbon, nitrogen, iron, phosphate, sulfur, and amino acids. Genetic circuits play a role in the response to environmental changes, modulating gene expression and adjusting the microbial metabolism to the nutrients available for the best energy usage and survival. We studied the sulfur amino acid biosynthesis and its implications on C. neoformans biology and virulence. CNAG_04798 encodes a BZip protein and was annotated as CYS3, which has been considered an essential gene. However, we demonstrated that CYS3 is not essential, in fact, its knockout led to sulfur amino acids auxotroph. Western blots and fluorescence microscopy indicated that GFP-Cys3, which is expressed from a constitutive promoter, localizes to the nucleus in rich medium (YEPD); the addition of methionine and cysteine as sole nitrogen source (SD-N + Met/Cys) led to reduced nuclear localization and protein degradation. By proteomics, we identified and confirmed physical interaction among Gpp2, Cna1, Cnb1 and GFP-Cys3. Deletion of the calcineurin and GPP2 genes in a GFP-Cys3 background demonstrated that calcineurin is required to maintain Cys3 high protein levels in YEPD and that deletion of GPP2 causes GFP-Cys3 to persist in the presence of sulfur amino acids. Global transcriptional profile of mutant and wild type by RNAseq revealed that Cys3 controls all branches of the sulfur amino acid biosynthesis, and sulfur starvation leads to induction of several amino acid biosynthetic routes. In addition, we found that Cys3 is required for virulence in Galleria mellonella animal model.
Collapse
|
16
|
Abstract
Sulfur assimilation and the biosynthesis of methionine, cysteine and S-adenosylmethionine (SAM) are critical to life. As a cofactor, SAM is required for the activity of most methyltransferases (MTases) and as such has broad impact on diverse cellular processes. Assigning function to MTases remains a challenge however, as many MTases are partially redundant, they often have multiple cellular roles and these activities can be condition-dependent. To address these challenges, we performed a systematic synthetic genetic analysis of all pairwise MTase double mutations in normal and stress conditions (16°C, 37°C, and LiCl) resulting in an unbiased comprehensive overview of the complexity and plasticity of the methyltransferome. Based on this network, we performed biochemical analysis of members of the histone H3K4 COMPASS complex and the phospholipid methyltransferase OPI3 to reveal a new role for a phospholipid methyltransferase in mediating histone methylation (H3K4) which underscores a potential link between lipid homeostasis and histone methylation. Our findings provide a valuable resource to study methyltransferase function, the dynamics of the methyltransferome, genetic crosstalk between biological processes and the dynamics of the methyltransferome in response to cellular stress.
Collapse
Affiliation(s)
- Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Elena Lissina
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
17
|
Luo H, Hansen ASL, Yang L, Schneider K, Kristensen M, Christensen U, Christensen HB, Du B, Özdemir E, Feist AM, Keasling JD, Jensen MK, Herrgård MJ, Palsson BO. Coupling S-adenosylmethionine-dependent methylation to growth: Design and uses. PLoS Biol 2019; 17:e2007050. [PMID: 30856169 PMCID: PMC6411097 DOI: 10.1371/journal.pbio.2007050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 11/29/2022] Open
Abstract
We present a selection design that couples S-adenosylmethionine–dependent methylation to growth. We demonstrate its use in improving the enzyme activities of not only N-type and O-type methyltransferases by 2-fold but also an acetyltransferase of another enzyme category when linked to a methylation pathway in Escherichia coli using adaptive laboratory evolution. We also demonstrate its application for drug discovery using a catechol O-methyltransferase and its inhibitors entacapone and tolcapone. Implementation of this design in Saccharomyces cerevisiae is also demonstrated. Many important biological processes require methylation, e.g., DNA methylation and synthesis of flavoring compounds, neurotransmitters, and antibiotics. Most methylation reactions in cells are catalyzed by S-adenosylmethionine (SAM)–dependent methyltransferases (Mtases) using SAM as a methyl donor. Thus, SAM-dependent Mtases have become an important enzyme category of biotechnological interests and as healthcare targets. However, functional implementation and engineering of SAM-dependent Mtases remains difficult and is neither cost effective nor high throughput. Here, we are able to address these challenges by establishing a synthetic biology approach, which links Mtase activity to cell growth such that higher Mtase activity ultimately leads to faster cell growth. We show that better-performing variants of the examined Mtases can be readily obtained by growth selection after repetitive cell passages. We also demonstrate the usefulness of our approach for discovery of Mtase-specific drug candidates. We further show our approach is not only applicable in bacteria, exemplified by Escherichia coli, but also in eurkaryotic organisms such as budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hao Luo
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| | - Anne Sofie L. Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulla Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanne B. Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bin Du
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus J. Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bernhard O. Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
18
|
Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T, Igarashi K. S-Adenosylmethionine Synthesis Is Regulated by Selective N 6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Rep 2018; 21:3354-3363. [PMID: 29262316 DOI: 10.1016/j.celrep.2017.11.092] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
S-adenosylmethionine (SAM) is an important metabolite as a methyl-group donor in DNA and histone methylation, tuning regulation of gene expression. Appropriate intracellular SAM levels must be maintained, because methyltransferase reaction rates can be limited by SAM availability. In response to SAM depletion, MAT2A, which encodes a ubiquitous mammalian methionine adenosyltransferase isozyme, was upregulated through mRNA stabilization. SAM-depletion reduced N6-methyladenosine (m6A) in the 3' UTR of MAT2A. In vitro reactions using recombinant METTL16 revealed multiple, conserved methylation targets in the 3' UTR. Knockdown of METTL16 and the m6A reader YTHDC1 abolished SAM-responsive regulation of MAT2A. Mutations of the target adenine sites of METTL16 within the 3' UTR revealed that these m6As were redundantly required for regulation. MAT2A mRNA methylation by METTL16 is read by YTHDC1, and we suggest that this allows cells to monitor and maintain intracellular SAM levels.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Masayuki Ebina
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuho Sato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sayaka Kumagai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
19
|
Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. Genetics of trans-regulatory variation in gene expression. eLife 2018; 7:e35471. [PMID: 30014850 PMCID: PMC6072440 DOI: 10.7554/elife.35471] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/30/2018] [Indexed: 12/02/2022] Open
Abstract
Heritable variation in gene expression forms a crucial bridge between genomic variation and the biology of many traits. However, most expression quantitative trait loci (eQTLs) remain unidentified. We mapped eQTLs by transcriptome sequencing in 1012 yeast segregants. The resulting eQTLs accounted for over 70% of the heritability of mRNA levels, allowing comprehensive dissection of regulatory variation. Most genes had multiple eQTLs. Most expression variation arose from trans-acting eQTLs distant from their target genes. Nearly all trans-eQTLs clustered at 102 hotspot locations, some of which influenced the expression of thousands of genes. Fine-mapped hotspot regions were enriched for transcription factor genes. While most genes had a local eQTL, most of these had no detectable effects on the expression of other genes in trans. Hundreds of non-additive genetic interactions accounted for small fractions of expression variation. These results reveal the complexity of genetic influences on transcriptome variation in unprecedented depth and detail.
Collapse
Affiliation(s)
- Frank Wolfgang Albert
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisUnited States
| | - Joshua S Bloom
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Jake Siegel
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Laura Day
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteLos AngelesUnited States
| |
Collapse
|
20
|
Phospholipids and inositol phosphates linked to the epigenome. Histochem Cell Biol 2018; 150:245-253. [DOI: 10.1007/s00418-018-1690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
21
|
Yurkiv M, Kurylenko O, Vasylyshyn R, Dmytruk K, Fickers P, Sibirny A. Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha. FEMS Yeast Res 2018. [DOI: 10.1093/femsyr/foy004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Marianna Yurkiv
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Olena Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Roksolana Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège—Gembloux Agro-Bio Tech, Avenue de la Faculté, 2B , 5030 Gembloux, Belgium
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35–601, Poland
| |
Collapse
|
22
|
Bucci MD, Weisenhorn E, Haws S, Yao Z, Zimmerman G, Gannon M, Taggart J, Lee T, Klionsky DJ, Russell J, Coon J, Eide DJ. An Autophagy-Independent Role for ATG41 in Sulfur Metabolism During Zinc Deficiency. Genetics 2018; 208:1115-1130. [PMID: 29321173 PMCID: PMC5844326 DOI: 10.1534/genetics.117.300679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The Zap1 transcription factor of Saccharomyces cerevisiae is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene ATG41 Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of ATG41 diminishes that response. Several experiments indicated that the importance of ATG41 function to growth during zinc deficiency is not because of its role in macroautophagy, but rather is due to one or more autophagy-independent functions. For example, rapamycin treatment fully induced autophagy in zinc-deficient atg41Δ mutants but failed to improve growth. In addition, atg41Δ mutants showed a far more severe growth defect than any of several other autophagy mutants tested, and atg41Δ mutants showed increased Heat Shock Factor 1 activity, an indicator of protein homeostasis stress, while other autophagy mutants did not. An autophagy-independent function for ATG41 in sulfur metabolism during zinc deficiency was suggested by analyzing the transcriptome of atg41Δ mutants during the transition from zinc-replete to -deficient conditions. Analysis of sulfur metabolites confirmed that Atg41 is needed for the normal accumulation of methionine, homocysteine, and cysteine in zinc-deficient cells. Therefore, we conclude that Atg41 plays roles in both macroautophagy and sulfur metabolism during zinc deficiency.
Collapse
Affiliation(s)
- Michael D Bucci
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Erin Weisenhorn
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Spencer Haws
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Zhiyuan Yao
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ginelle Zimmerman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Molly Gannon
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Traci Lee
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, Wisconsin 53144
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason Russell
- Morgridge Institute for Research, Madison, Wisconsin 53715
- Genome Center of Wisconsin, University of Wisconsin-Madison, Wisconsin 53706
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706
- Morgridge Institute for Research, Madison, Wisconsin 53715
- Genome Center of Wisconsin, University of Wisconsin-Madison, Wisconsin 53706
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
23
|
Abstract
In this issue of Molecular Cell, Ye et al. (2017) use a combination of genetic, metabolomic, and transcriptomic approaches to explore the potential for methionine metabolism to influence signal transduction and gene expression in budding yeast.
Collapse
Affiliation(s)
- Yuxiang Zheng
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
24
|
Gordon BR, Martin DE, Bambery KR, Motti CA. Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study. J Microsc 2017; 270:83-91. [PMID: 29064560 DOI: 10.1111/jmi.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/22/2017] [Indexed: 11/27/2022]
Abstract
The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR-IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes.
Collapse
Affiliation(s)
- B R Gordon
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Queensland, Australia
| | - D E Martin
- Australian Synchrotron, Clayton, Victoria, Australia
| | - K R Bambery
- Australian Synchrotron, Clayton, Victoria, Australia
| | - C A Motti
- The Australian Institute of Marine Science, Cape Cleveland, Queensland, Australia
| |
Collapse
|
25
|
Ye C, Sutter BM, Wang Y, Kuang Z, Tu BP. A Metabolic Function for Phospholipid and Histone Methylation. Mol Cell 2017; 66:180-193.e8. [PMID: 28366644 DOI: 10.1016/j.molcel.2017.02.026] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/31/2017] [Accepted: 02/27/2017] [Indexed: 11/28/2022]
Abstract
S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
26
|
Lorenz E, Schmacht M, Senz M. Evaluation of cysteine ethyl ester as efficient inducer for glutathione overproduction in Saccharomyces spp. Enzyme Microb Technol 2016; 93-94:122-131. [DOI: 10.1016/j.enzmictec.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023]
|
27
|
Yamada Y, Koori D, Oshikawa Y, Koikawa M. Stereospecific interaction of optically active sulfur-bridged dinuclear Co(III)–Pt(II) complex with pseudo-enantiomeric Co(III)–M(II) (M: Pd or Pt) complex involving unequivalent π electronic system. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Lorenz E, Schmacht M, Stahl U, Senz M. Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae. J Biotechnol 2015; 216:131-9. [DOI: 10.1016/j.jbiotec.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
|
29
|
Yamada Y, Nagasaki T. Stereospecific π–π stacking interactions between pseudo-enantiomeric sulfur-bridged dinuclear Co(III)–Pd(II) and Co(III)–Pt(II) complexes of optically active penicillaminates. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|