1
|
Gümüşderelioğlu S, Sahabandu N, Elnatan D, Gregory EF, Chiba K, Niwa S, Luxton GWG, McKenney RJ, Starr DA. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641899. [PMID: 40093101 PMCID: PMC11908248 DOI: 10.1101/2025.03.06.641899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope KASH protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity. The shorter UNC-83c isoform promotes kinesin-1-dependent nuclear movement in embryonic hyp7 precursors, while longer UNC-83a/b isoforms facilitate dynein-mediated nuclear migration in larval P cells. We demonstrate that UNC-83a's N-terminal domain functions as a kinesin-1 inhibitory module by directly binding kinesin heavy chain (UNC-116). This isoform-specific inhibition, combined with differential affinity for kinesin light chain (KLC-2), establishes a molecular switch for directional control. Together, these interdisciplinary studies reveal how alternative isoforms of cargo adaptors can generate developmental stage-specific regulation of motor activity during development.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Natalie Sahabandu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
2
|
Gräf R, Batsios P, Grafe M, Meyer I, Mitic K. Nuclear Envelope Dynamics in Dictyostelium Amoebae. Cells 2025; 14:186. [PMID: 39936978 PMCID: PMC11816917 DOI: 10.3390/cells14030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
In the last decades, the study of many nuclear envelope components in Dictyostelium amoebae has revealed conserved mechanisms of nuclear envelope dynamics that root back unexpectedly deep into the eukaryotic tree of life. In this review, we describe the state of the art in nuclear envelope research in this organism starting from early work on nuclear pore complexes to characterization of the first true lamin in a non-metazoan organism and its associated nuclear envelope transmembrane proteins, such as the HeH-family protein Src1 and the LINC complex protein Sun1. We also describe the dynamic processes during semi-closed mitosis, including centrosome insertion into the nuclear envelope, and processes involved in the restoration of nuclear envelope permeability around mitotic exit and compare them to the situation in cells with open or fully closed mitosis.
Collapse
Affiliation(s)
- Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Petros Batsios
- Sigma-Aldrich Chemie GmbH, Eschenstraße 5, 82024 Taufkirchen, Germany;
| | - Marianne Grafe
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Kristina Mitic
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| |
Collapse
|
3
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
4
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
5
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
6
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
7
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
8
|
Benarroch L, Madsen-Østerbye J, Abdelhalim M, Mamchaoui K, Ohana J, Bigot A, Mouly V, Bonne G, Bertrand AT, Collas P. Cellular and Genomic Features of Muscle Differentiation from Isogenic Fibroblasts and Myoblasts. Cells 2023; 12:1995. [PMID: 37566074 PMCID: PMC10417614 DOI: 10.3390/cells12151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.
Collapse
Affiliation(s)
- Louise Benarroch
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Jessica Ohana
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
9
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
10
|
Gümüşderelioğlu S, Resch L, Brock T, Undiagnosed Diseases Network, Luxton GWG, Cope H, Tan QKG, Hopkins C, Starr DA. A humanized Caenorhabditis elegans model of hereditary spastic paraplegia-associated variants in KLC4. Dis Model Mech 2023; 16:dmm050076. [PMID: 37565267 PMCID: PMC10481945 DOI: 10.1242/dmm.050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain 4 (KLC4) that is suspected to be associated with autosomal-dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized Caenorhabditis elegans model in which klc-2 was replaced by human KLC4 (referred to as hKLC4) and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2. Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality, with significant defects in nuclear migration when homozygous and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late-onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and to use it to test the significance of five variants of uncertain significance in the human gene KLC4.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Queenie K.-G. Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Liu C, Rex R, Lung Z, Wang JS, Wu F, Kim HJ, Zhang L, Sohn LL, Dernburg AF. A cooperative network at the nuclear envelope counteracts LINC-mediated forces during oogenesis in C. elegans. SCIENCE ADVANCES 2023; 9:eabn5709. [PMID: 37436986 PMCID: PMC10337908 DOI: 10.1126/sciadv.abn5709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Oogenesis involves transduction of mechanical forces from the cytoskeleton to the nuclear envelope (NE). In Caenorhabditis elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to collapse under forces mediated through LINC (linker of nucleoskeleton and cytoskeleton) complexes. Here, we use cytological analysis and in vivo imaging to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We also use a mechano-node-pore sensing device to directly measure the effect of genetic mutations on oocyte nuclear stiffness. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein, which induces polarization of a LINC complex composed of Sad1 and UNC-84 homology 1 (SUN-1) and ZYGote defective 12 (ZYG-12). Lamins contribute to oocyte nuclear stiffness and cooperate with other inner nuclear membrane proteins to distribute LINC complexes and protect nuclei from collapse. We speculate that a similar network may protect oocyte integrity during extended oocyte arrest in mammals.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Rex
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zoe Lung
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John S. Wang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fan Wu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hyung Jun Kim
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Liangyu Zhang
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lydia L. Sohn
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biological Sciences and Engineering, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547980. [PMID: 37461528 PMCID: PMC10350047 DOI: 10.1101/2023.07.06.547980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a DNA binding protein that crosslinks chromatin to assemble the nuclear envelope (NE) after mitosis. BAF also binds the Lap2b-Emerin-Man1 (LEM) domain family of NE proteins to repair interphase ruptures. The NE adaptors to ESCRTs, LEMD2-CHMP7, seal NE holes surrounding mitotic spindle microtubules (MTs), but whether NE hole closure in mitosis involves BAF-LEM binding is not known. Here, we analyze NE sealing after meiosis II in C. elegans oocytes to show that BAF-LEM binding and LEM-2 LEMD2 -CHMP-7 have distinct roles in hole closure around spindle MTs. LEM-2/EMR-1 emerin function redundantly with BAF-1 to seal the NE. Compromising BAF-LEM binding revealed an additional role for EMR-1 in maintenance of the NE permeability barrier and an essential role for LEM-2-CHMP-7 in preventing NE assembly failure. The WH domain of LEM-2 recruits the majority of CHMP-7 to the NE in C. elegans and a LEM-2 -independent pool of CHMP-7, which is mostly enriched in the nucleoplasm, also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| | - Lauren Penfield
- Current address: Department of Molecular, Cellular, and Developmental Biology at University of California, Santa Barbara, CA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| |
Collapse
|
13
|
Gümüşderelioğlu S, Resch L, Brock T, Luxton GWG, Tan QKG, Hopkins C, Starr DA. A humanized Caenorhabditis elegans model of Hereditary Spastic Paraplegia-associated variants in kinesin light chain KLC4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523106. [PMID: 36789438 PMCID: PMC9928042 DOI: 10.1101/2023.01.07.523106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain KLC4 that is suspected to be associated with autosomal dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized C. elegans model where klc- 2 was replaced with human KLC4 and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2 . Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality with significant defects in nuclear migration when homozygous, and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and use it to test the significance of five variants of uncertain significance in the human gene KLC4 . Summary Statement We identified a variant in KLC4 associated with Hereditary Spastic Paraplegia. The variant had physiological relevance in a humanized C. elegans model where we replaced klc-2 with human KLC4 .
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Taiber S, Gozlan O, Cohen R, Andrade LR, Gregory EF, Starr DA, Moran Y, Hipp R, Kelley MW, Manor U, Sprinzak D, Avraham KB. A Nesprin-4/kinesin-1 cargo model for nuclear positioning in cochlear outer hair cells. Front Cell Dev Biol 2022; 10:974168. [PMID: 36211453 PMCID: PMC9537699 DOI: 10.3389/fcell.2022.974168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/14/2022] Open
Abstract
Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rebecca Hipp
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| |
Collapse
|
15
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
16
|
Charar C, Metsuyanim-Cohen S, Bar DZ. Lamin regulates the dietary restriction response via the mTOR pathway in Caenorhabditis elegans. J Cell Sci 2021; 134:272061. [PMID: 34383046 PMCID: PMC8445603 DOI: 10.1242/jcs.258428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Animals subjected to dietary restriction (DR) have reduced body size, low fecundity, slower development, lower fat content and longer life span. We identified lamin as a regulator of multiple dietary restriction phenotypes. Downregulation of lmn-1, the single Caenorhabditis elegans lamin gene, increased animal size and fat content specifically in DR animals. The LMN-1 protein acts in the mTOR pathway, upstream of RAPTOR and S6 kinase β1 (S6K), a key component of and target of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), respectively. DR excludes the mTORC1 activator RAGC-1 from the nucleus. Downregulation of lmn-1 restores RAGC-1 to the nucleus, a necessary step for the activation of the mTOR pathway. These findings further link lamin to metabolic regulation. Summary: Downregulation of the single C. elegans lamin gene increases animal size and fat content specifically in dietary restricted animals. The lamin protein acts in the mTOR pathway to regulate these phenotypes.
Collapse
Affiliation(s)
- Chayki Charar
- The School of Dental Medicine, The Faculty of Medicine, Tel Aviv University, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Daniel Z Bar
- The School of Dental Medicine, The Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
17
|
Jahed Z, Domkam N, Ornowski J, Yerima G, Mofrad MRK. Molecular models of LINC complex assembly at the nuclear envelope. J Cell Sci 2021; 134:269219. [PMID: 34152389 DOI: 10.1242/jcs.258194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA 92039, USA
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Hao H, Kalra S, Jameson LE, Guerrero LA, Cain NE, Bolivar J, Starr DA. The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. eLife 2021; 10:e61069. [PMID: 33860766 PMCID: PMC8139857 DOI: 10.7554/elife.61069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of linker of nucleoskeleton and cytoskeleton (LINC) complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the transmembrane (TM) span. In anc-1 mutants, the endoplasmic reticulum ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and other organelles in place.
Collapse
Affiliation(s)
- Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Laura E Jameson
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Leslie A Guerrero
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jessica Bolivar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
19
|
Charar C, Metsuyanim-Cohen S, Gruenbaum Y, Bar DZ. Exploring the nuclear lamina in health and pathology using C. elegans. Curr Top Dev Biol 2021; 144:91-110. [PMID: 33992162 DOI: 10.1016/bs.ctdb.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The eukaryotic genome inside the nucleus is enveloped by two membranes, the Outer Nuclear Membrane (ONM) and the Inner Nuclear Membrane (INM). Tethered to the INM is the nuclear lamina, a fibrillar network composed of lamins-the nuclear intermediate filaments, and membrane associated proteins. The nuclear lamina interacts with several nuclear structures, including chromatin. As most nuclear functions, including regulation of gene expression, chromosome segregation and duplication as well as nuclear structure, are highly conserved in metazoans, the Caenorhabditis elegans nematode serves as a powerful model organism to study nuclear processes and architecture. This translucent organism can easily be observed under a microscope as a live embryo, larvae and even adult. Here we will review the data on nuclear lamina composition and functions gathered from studies using C. elegans model organisms: We will discuss genome spatial organization and its contribution to gene expression. We will review both the interaction between the cytoplasm and the nucleus and mechanotransduction mechanism. Finally, we will discuss disease causing mutation in nuclear lamins, including the use of this animal model in diseases research.
Collapse
Affiliation(s)
- Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sally Metsuyanim-Cohen
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
21
|
Decreased mechanotransduction prevents nuclear collapse in a Caenorhabditis elegans laminopathy. Proc Natl Acad Sci U S A 2020; 117:31301-31308. [PMID: 33229589 PMCID: PMC7733798 DOI: 10.1073/pnas.2015050117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelopathies are a complex group of human diseases caused by mutations in nuclear envelope proteins, including progeria, myopathy, and dystonia. Here, we used the Caenorhabditis elegans germline as a model system to investigate the function of the OOC-5/torsinA AAA+ ATPase, which localizes to the nuclear envelope and is mutated in early-onset DYT1 dystonia in humans. We show that OOC-5/torsinA promotes the function of the LINC complex, which spans the nuclear envelope and transmits forces to the nuclear lamina. Remarkably, decreasing the function of OOC-5/torsinA or the LINC complex prevents nuclear collapse in the absence of a functional nuclear lamina. Therapeutics targeting torsinA or the LINC complex might prevent nuclear damage from endogenous forces in certain nuclear envelopathies. The function of the nucleus depends on the integrity of the nuclear lamina, an intermediate filament network associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex. The LINC complex spans the nuclear envelope and mediates nuclear mechanotransduction, the process by which mechanical signals and forces are transmitted across the nuclear envelope. In turn, the AAA+ ATPase torsinA is thought to regulate force transmission from the cytoskeleton to the nucleus. In humans, mutations affecting nuclear envelope-associated proteins cause laminopathies, including progeria, myopathy, and dystonia, though the extent to which endogenous mechanical stresses contribute to these pathologies is unclear. Here, we use the Caenorhabditis elegans germline as a model to investigate mechanisms that maintain nuclear integrity as germ cell nuclei progress through meiotic development and migrate for gametogenesis—processes that require LINC complex function. We report that decreasing the function of the C. elegans torsinA homolog, OOC-5, rescues the sterility and premature aging caused by a null mutation in the single worm lamin homolog. We show that decreasing OOC-5/torsinA activity prevents nuclear collapse in lamin mutants by disrupting the function of the LINC complex. At a mechanistic level, OOC-5/torsinA promotes the assembly or maintenance of the lamin-associated LINC complex and this activity is also important for interphase nuclear pore complex insertion into growing germline nuclei. These results demonstrate that LINC complex-transmitted forces damage nuclei with a compromised nuclear lamina. Thus, the torsinA–LINC complex nexus might comprise a therapeutic target for certain laminopathies by preventing damage from endogenous cellular forces.
Collapse
|
22
|
Lorber D, Rotkopf R, Volk T. A minimal constraint device for imaging nuclei in live Drosophila contractile larval muscles reveals novel nuclear mechanical dynamics. LAB ON A CHIP 2020; 20:2100-2112. [PMID: 32432302 DOI: 10.1039/d0lc00214c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Muscle contractions produce reiterated cytoplasmic mechanical variations, which potentially influence nuclear mechanotransduction, however information regarding the dynamics of muscle nuclei (myonuclei) in the course of muscle contraction is still missing. Towards that end, a minimal constraint device was designed in which intact live Drosophila larva is imaged, while its muscles still contract. The device is placed under spinning disc confocal microscope enabling imaging of fluorescently labeled sarcomeres and nuclei during muscle contraction, without any external stimulation. As a proof of principle we studied myonuclei dynamics in wild-type, as well as in Nesprin/klar mutant larvae lacking proper nuclear-cytoskeletal connections. Myonuclei in control larvae exhibited comparable dynamics in the course of multiple contractile events, independent of their position along the muscle fiber. In contrast, myonuclei of mutant larvae displayed differential dynamics at distinct positions along individual myofibers. Moreover, we identified a linear link between myonuclear volume and its acceleration values during muscle contraction which, in Nesprin/klar mutants exhibited an opposite tendency relative to control. Estimation of the drag force applied on individual myonuclei revealed that force fluctuations in time, but not the average force, differed significantly between control and Nesprin/klar mutant, and were considerably higher in the mutant myonuclei. Taken together these results imply significant alterations in the mechanical dynamics of individual myonuclei in the Nesprin/klar myonuclei relative to control. Such differences provide novel mechanical insight into Nesprin function in contractile muscles, and might reveal the mechanical basis underlying Nesprin-related human diseases.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Israel.
| | | | | |
Collapse
|
23
|
Zuela-Sopilniak N, Bar-Sela D, Charar C, Wintner O, Gruenbaum Y, Buxboim A. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load. Mol Biol Cell 2020; 31:1943-1950. [PMID: 32583745 PMCID: PMC7525816 DOI: 10.1091/mbc.e20-01-0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclei within cells are constantly subjected to compressive, tensile, and shear forces, which regulate nucleoskeletal and cytoskeletal remodeling, activate signaling pathways, and direct cell-fate decisions. Multiple rheological methods have been adapted for characterizing the response to applied forces of isolated nuclei and nuclei within intact cells. However, in vitro measurements fail to capture the viscoelastic modulation of nuclear stress-strain relationships by the physiological tethering to the surrounding cytoskeleton, extracellular matrix and cells, and tissue-level architectures. Using an equiaxial stretching apparatus, we applied a step stress and measured nucleus deformation dynamics within living Caenorhabditis elegans nematodes. Nuclei deformed nonmonotonically under constant load. Nonmonotonic deformation was conserved across tissues and robust to nucleoskeletal and cytoskeletal perturbations, but it required intact linker of nucleoskeleton and cytoskeleton complex attachments. The transition from creep to strain recovery fits a tensile-compressive linear viscoelastic model that is indicative of nucleoskeletal–cytoskeletal decoupling under high load. Ce-lamin (lmn-1) knockdown softened the nucleus, whereas nematode aging stiffened the nucleus and decreased deformation recovery rate. Recovery lasted minutes rather than seconds due to physiological damping of the released mechanical energy, thus protecting nuclear integrity and preventing chromatin damage.
Collapse
Affiliation(s)
- Noam Zuela-Sopilniak
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Bar-Sela
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chayki Charar
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Oren Wintner
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yosef Gruenbaum
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| |
Collapse
|
24
|
Abstract
LINC complexes (Linker of Nucleoskeleton and Cytoskeleton), consisting of inner nuclear membrane SUN (Sad1, UNC-84) proteins and outer nuclear membrane KASH (Klarsicht, ANC-1, and Syne Homology) proteins, are essential for nuclear positioning, cell migration and chromosome dynamics. To test the in vivo functions of conserved interfaces revealed by crystal structures, Cain et al used a combination of Caenorhabditis elegans genetics, imaging in cultured NIH 3T3 fibroblasts, and Molecular Dynamic simulations, to study SUN-KASH interactions. Conserved aromatic residues at the -7 position of the C-termini of KASH proteins and conserved disulfide bonds in LINC complexes play important roles in force transmission across the nuclear envelope. Other properties of LINC complexes, such as the helices preceding the SUN domain, the longer coiled-coils spanning the perinuclear space and higher-order organization may also function to transmit mechanical forces generated by the cytoskeleton across the nuclear envelope.
Collapse
Affiliation(s)
- Hongyan Hao
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| | - Daniel A Starr
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| |
Collapse
|
25
|
Methods to Measure Perinuclear Actin Dynamics During Nuclear Movement in Migrating Cells. Methods Mol Biol 2019; 2101:371-385. [PMID: 31879914 DOI: 10.1007/978-1-0716-0219-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The nucleus is specifically positioned within a cell in diverse biological contexts. There are multiple connections between the nuclear envelope and the cytoskeleton and these connections are involved in nuclear positioning. During cell polarization prior to cell migration, nuclear envelope proteins bind to the actin cytoskeleton and get organized into linear arrays, known as transmembrane actin-associated nuclear (TAN) lines to move the nucleus away from the leading edge. Here we describe methods to study perinuclear actin dynamics, including measurement of the thickness of actin cables coupled to TAN lines, measurement of the number of perinuclear actin cables, and ablation of perinuclear actin cables. These methods are used to identify mechanisms of nuclear positioning.
Collapse
|
26
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Jahed Z, Hao H, Thakkar V, Vu UT, Valdez VA, Rathish A, Tolentino C, Kim SCJ, Fadavi D, Starr DA, Mofrad MRK. Role of KASH domain lengths in the regulation of LINC complexes. Mol Biol Cell 2019; 30:2076-2086. [PMID: 30995155 PMCID: PMC6727767 DOI: 10.1091/mbc.e19-02-0079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The linker of the nucleoskeleton and cytoskeleton (LINC) complex is formed by the conserved interactions between Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, providing a physical coupling between the nucleoskeleton and cytoskeleton that mediates the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. For example, in Caenorhabditis elegans, SUN protein UNC-84 binds to two KASH proteins UNC-83 and ANC-1 to mediate nuclear migration and anchorage, respectively. In addition to distinct cytoplasmic domains, the luminal KASH domain also varies among KASH domain proteins of distinct functions. In this study, we combined in vivo C. elegans genetics and in silico molecular dynamics simulations to understand the relation between the length and amino acid composition of the luminal KASH domain, and the function of the SUN–KASH complex. We show that longer KASH domains can withstand and transfer higher forces and interact with the membrane through a conserved membrane proximal EEDY domain that is unique to longer KASH domains. In agreement with our models, our in vivo results show that swapping the KASH domains of ANC-1 and UNC-83, or shortening the KASH domain of ANC-1, both result in a nuclear anchorage defect in C. elegans.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Vyom Thakkar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Uyen T Vu
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Venecia A Valdez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Akshay Rathish
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Chris Tolentino
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Samuel C J Kim
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Darya Fadavi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
28
|
Cain NE, Jahed Z, Schoenhofen A, Valdez VA, Elkin B, Hao H, Harris NJ, Herrera LA, Woolums BM, Mofrad MRK, Luxton GWG, Starr DA. Conserved SUN-KASH Interfaces Mediate LINC Complex-Dependent Nuclear Movement and Positioning. Curr Biol 2018; 28:3086-3097.e4. [PMID: 30245107 DOI: 10.1016/j.cub.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Many nuclear positioning events involve linker of nucleoskeleton and cytoskeleton (LINC) complexes, which transmit forces generated by the cytoskeleton across the nuclear envelope. LINC complexes are formed by trans-luminal interactions between inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins, but how these interactions are regulated is poorly understood. We combine in vivo C. elegans genetics, in vitro wounded fibroblast polarization, and in silico molecular dynamics simulations to elucidate mechanisms of LINC complexes. The extension of the KASH domain by a single alanine residue or the mutation of the conserved tyrosine at -7 completely blocked the nuclear migration function of C. elegans UNC-83. Analogous mutations at -7 of mouse nesprin-2 disrupted rearward nuclear movements in NIH 3T3 cells, but did not disrupt ANC-1 in nuclear anchorage. Furthermore, conserved cysteines predicted to form a disulfide bond between SUN and KASH proteins are important for the function of certain LINC complexes, and might promote a developmental switch between nuclear migration and nuclear anchorage. Mutations of conserved cysteines in SUN or KASH disrupted ANC-1-dependent nuclear anchorage in C. elegans and Nesprin-2G-dependent nuclear movements in polarizing fibroblasts. However, the SUN cysteine mutation did not disrupt nuclear migration. Moreover, molecular dynamics simulations showed that a disulfide bond is necessary for the maximal transmission of cytoskeleton-generated forces by LINC complexes in silico. Thus, we have demonstrated functions for SUN-KASH binding interfaces, including a predicted intermolecular disulfide bond, as mechanistic determinants of nuclear positioning that may represent targets for regulation.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, 208A Stanley Hall, Berkeley, CA 94720, USA
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Venecia A Valdez
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Baila Elkin
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, 208A Stanley Hall, Berkeley, CA 94720, USA
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Sad1 Spatiotemporally Regulates Kinetochore Clustering To Ensure High-Fidelity Chromosome Segregation in the Human Fungal Pathogen Cryptococcus neoformans. mSphere 2018; 3:3/4/e00190-18. [PMID: 29976642 PMCID: PMC6034078 DOI: 10.1128/msphere.00190-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is present in fungi, animals, and plants. It performs diverse functions in animals, and its role(s) have recently been explored in plants. In ascomycetous yeast species, the role of the LINC complex in spindle pole body function and telomere clustering during meiosis has been determined. However, nothing is known about the LINC complex in the fungal phylum of Basidiomycota. In this study, we identified the role of the LINC complex in kinetochore dynamics as well as in nuclear migration in a basidiomycetous yeast, Cryptococcus neoformans, a human pathogen. Unlike most other yeast species, kinetochores remain unclustered during interphase but gradually cluster during mitosis in C. neoformans. We report that the LINC complex is required for timely onset of kinetochore clustering and high-fidelity chromosome segregation in C. neoformans. Thus, our study identifies a novel factor required for kinetochore clustering during mitosis in yeast species. Kinetochore clustering, frequently observed in yeasts, plays a key role in genome organization and chromosome segregation. In the absence of the metaphase plate arrangement, kinetochore clustering in yeast species is believed to facilitate timely kinetochore-microtubule interactions to achieve bivalent attachments of chromosomes during metaphase. The factors determining the dynamics of kinetochore clustering remain largely unknown. We previously reported that kinetochores oscillate between an unclustered and a clustered state during the mitotic cell cycle in the basidiomycetous yeast Cryptococcus neoformans. Based on tubulin localization patterns, while kinetochore clustering appears to be microtubule dependent, an indirect interaction of microtubules with kinetochores is expected in C. neoformans. In this study, we sought to examine possible roles of the SUN-KASH protein complex, known to form a bridge across the nuclear envelope, in regulating kinetochore clustering in C. neoformans. We show that the SUN domain protein Sad1 localizes close to kinetochores in interphase as well as in mitotic cells. Sad1 is nonessential for viability in C. neoformans but is required for proper growth and high-fidelity chromosome segregation. Further, we demonstrate that the onset of kinetochore clustering is significantly delayed in cells lacking Sad1 compared to wild-type cells. Taken together, this study identifies a novel role of the SUN domain protein Sad1 in spatiotemporal regulation of kinetochore clustering during the mitotic cell cycle in C. neoformans. IMPORTANCE The linker of nucleoskeleton and cytoskeleton (LINC) complex is present in fungi, animals, and plants. It performs diverse functions in animals, and its role(s) have recently been explored in plants. In ascomycetous yeast species, the role of the LINC complex in spindle pole body function and telomere clustering during meiosis has been determined. However, nothing is known about the LINC complex in the fungal phylum of Basidiomycota. In this study, we identified the role of the LINC complex in kinetochore dynamics as well as in nuclear migration in a basidiomycetous yeast, Cryptococcus neoformans, a human pathogen. Unlike most other yeast species, kinetochores remain unclustered during interphase but gradually cluster during mitosis in C. neoformans. We report that the LINC complex is required for timely onset of kinetochore clustering and high-fidelity chromosome segregation in C. neoformans. Thus, our study identifies a novel factor required for kinetochore clustering during mitosis in yeast species.
Collapse
|
30
|
Insight into the functional organization of nuclear lamins in health and disease. Curr Opin Cell Biol 2018; 54:72-79. [PMID: 29800922 DOI: 10.1016/j.ceb.2018.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
Lamins are the main component of the nuclear lamina, a protein meshwork at the inner nuclear membrane which primarily provide mechanical stability to the nucleus. Lamins, type V intermediate filament proteins, are also involved in many nuclear activities. Structural analysis of nuclei revealed that lamins form 3.5nm thick filaments often interact with nuclear pore complexes. Mutations in the LMNA gene, encoding A-type lamins, have been associated with at least 15 distinct diseases collectively termed laminopathies, including muscle, metabolic and neurological disorders, and premature aging syndrome. It is unclear how laminopathic mutations lead to such a wide array of diseases, essentially affecting almost all tissues.
Collapse
|
31
|
Zeng X, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Wu G, Yan X. Nuclear Envelope-Associated Chromosome Dynamics during Meiotic Prophase I. Front Cell Dev Biol 2018; 5:121. [PMID: 29376050 PMCID: PMC5767173 DOI: 10.3389/fcell.2017.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Chromosome dynamics during meiotic prophase I are associated with a series of major events such as chromosomal reorganization and condensation, pairing/synapsis and recombination of the homologs, and chromosome movements at the nuclear envelope (NE). The NE is the barrier separating the nucleus from the cytoplasm and thus plays a central role in NE-associated chromosomal movements during meiosis. Previous studies have shown in various species that NE-linked chromosome dynamics are actually driven by the cytoskeleton. The linker of nucleoskeleton and cytoskeleton (LINC) complexes are important constituents of the NE that facilitate in the transfer of cytoskeletal forces across the NE to individual chromosomes. The LINCs consist of the inner and outer NE proteins Sad1/UNC-84 (SUN), and Klarsicht/Anc-1/Syne (KASH) domain proteins. Meiosis-specific adaptations of the LINC components and unique modifications of the NE are required during chromosomal movements. Nonetheless, the actual role of the NE in chromosomic dynamic movements in plants remains elusive. This review summarizes the findings of recent studies on meiosis-specific constituents and modifications of the NE and corresponding nucleoplasmic/cytoplasmic adaptors being involved in NE-associated movement of meiotic chromosomes, as well as describes the potential molecular network of transferring cytoplasm-derived forces into meiotic chromosomes in model organisms. It helps to gain a better understanding of the NE-associated meiotic chromosomal movements in plants.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
32
|
Fridolfsson HN, Herrera LA, Brandt JN, Cain NE, Hermann GJ, Starr DA. Genetic Analysis of Nuclear Migration and Anchorage to Study LINC Complexes During Development of Caenorhabditis elegans. Methods Mol Biol 2018; 1840:163-180. [PMID: 30141045 DOI: 10.1007/978-1-4939-8691-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - James N Brandt
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Greg J Hermann
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Qi YX, Han Y, Jiang ZL. Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:69-82. [PMID: 30315540 DOI: 10.1007/978-3-319-96445-4_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc., and induce the cascade reaction processes through complicated cellular signaling networks. Recent researches suggest that nuclear envelope proteins act as the functional homology of molecules on the membrane, are important mechanosensitive molecules which modulate chromatin location and gene transcription, and subsequently regulate cellular functions. However, the studies on the roles of nucleus in the mechanotransduction process are still at the beginning. Here, based on the recent researches, we focused on the nuclear envelope proteins and discussed the roles of pathological hemodynamic forces in vascular remodeling. It may provide new insight into understanding the molecular mechanism of vascular physiological homeostasis and pathophysiological remodeling and may help to develop hemodynamic-based strategies for the prevention and management of vascular diseases.
Collapse
Affiliation(s)
- Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Abstract
Abstract
Vascular remodeling is a common pathological process in cardiovascular diseases and includes changes in cell proliferation, apoptosis and differentiation as well as vascular homeostasis. Mechanical stresses, such as shear stress and cyclic stretch, play an important role in vascular remodeling. Vascular cells can sense the mechanical factors through cell membrane proteins, cytoskeletons and nuclear envelope proteins to initiate mechanotransduction, which involves intercellular signaling, gene expression, and protein expression to result in functional regulations. Non-coding RNAs, including microRNAs and long non-coding RNAs, are involved in the regulation of vascular remodeling processes. Mechanotransduction triggers a cascade reaction process through a complicated signaling network in cells. High-throughput technologies in combination with functional studies targeting some key hubs and bridging nodes of the network can enable the prioritization of potential targets for subsequent investigations of clinical translation. Vascular mechanobiology, as a new frontier field of biomechanics, searches for principles of stress-growth in vasculature to elucidate how mechanical factors induce biological effects that lead to vascular remodeling, with the goal of understanding the mechanical basis of the pathological mechanism of cardiovascular diseases at the cellular and molecular levels. Vascular mechanobiology will play a unique role in solving the key scientific problems of human physiology and disease, as well as generating important theoretical and clinical results.
Collapse
Affiliation(s)
- Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
35
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
36
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
37
|
Abstract
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
Liu L, Luo Q, Sun J, Wang A, Shi Y, Ju Y, Morita Y, Song G. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells. Exp Cell Res 2017; 355:172-181. [PMID: 28392353 DOI: 10.1016/j.yexcr.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration.
Collapse
Affiliation(s)
- Lingling Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Aoli Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Yisong Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Yasuyuki Morita
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
39
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
40
|
Lawrence KS, Tapley EC, Cruz VE, Li Q, Aung K, Hart KC, Schwartz TU, Starr DA, Engebrecht J. LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. J Cell Biol 2016; 215:801-821. [PMID: 27956467 PMCID: PMC5166498 DOI: 10.1083/jcb.201604112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023] Open
Abstract
The Caenorhabditis elegans SUN domain protein, UNC-84, functions in nuclear migration and anchorage in the soma. We discovered a novel role for UNC-84 in DNA damage repair and meiotic recombination. Loss of UNC-84 leads to defects in the loading and disassembly of the recombinase RAD-51. Similar to mutations in Fanconi anemia (FA) genes, unc-84 mutants and human cells depleted of Sun-1 are sensitive to DNA cross-linking agents, and sensitivity is rescued by the inactivation of nonhomologous end joining (NHEJ). UNC-84 also recruits FA nuclease FAN-1 to the nucleoplasm, suggesting that UNC-84 both alters the extent of repair by NHEJ and promotes the processing of cross-links by FAN-1. UNC-84 interacts with the KASH protein ZYG-12 for DNA damage repair. Furthermore, the microtubule network and interaction with the nucleoskeleton are important for repair, suggesting that a functional linker of nucleoskeleton and cytoskeleton (LINC) complex is required. We propose that LINC complexes serve a conserved role in DNA repair through both the inhibition of NHEJ and the promotion of homologous recombination at sites of chromosomal breaks.
Collapse
Affiliation(s)
- Katherine S Lawrence
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Qianyan Li
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kayla Aung
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kevin C Hart
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel A Starr
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| |
Collapse
|
41
|
Bone CR, Chang YT, Cain NE, Murphy SP, Starr DA. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells. Development 2016; 143:4193-4202. [PMID: 27697906 DOI: 10.1242/dev.141192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shaun P Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Liu L, Luo Q, Sun J, Song G. Nucleus and nucleus-cytoskeleton connections in 3D cell migration. Exp Cell Res 2016; 348:56-65. [DOI: 10.1016/j.yexcr.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
|
43
|
Dickinson RB, Neelam S, Lele TP. Dynamic, mechanical integration between nucleus and cell- where physics meets biology. Nucleus 2016; 6:360-5. [PMID: 26338356 DOI: 10.1080/19491034.2015.1090074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.
Collapse
Affiliation(s)
- Richard B Dickinson
- a Department of Chemical Engineering ; University of Florida ; Gainesville , FL USA
| | - Srujana Neelam
- b Department of Biomedical Engineering ; University of Florida ; Gainesville , FL USA
| | - Tanmay P Lele
- a Department of Chemical Engineering ; University of Florida ; Gainesville , FL USA
| |
Collapse
|
44
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
45
|
Mechanotransduction and nuclear function. Curr Opin Cell Biol 2016; 40:98-105. [PMID: 27018929 DOI: 10.1016/j.ceb.2016.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Many signaling pathways converge on the nucleus to regulate crucial nuclear events such as transcription, DNA replication and cell cycle progression. Although the vast majority of research in this area has focused on signals generated in response to hormones or other soluble factors, the nucleus also responds to mechanical forces. During the past decade or so, much has been learned about how mechanical force can affect transcription, as well as the growth and differentiation of cells. Much has also been learned about how force is transmitted via the cytoskeleton to the nucleus and then across the nuclear envelope to the nuclear lamina and chromatin. In this brief review, we focus on some of the key proteins that transmit mechanical signals across the nuclear envelope.
Collapse
|
46
|
Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos. Cells 2016; 5:cells5010008. [PMID: 26927181 PMCID: PMC4810093 DOI: 10.3390/cells5010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Matefin/SUN-1 is an evolutionary conserved C. elegans inner nuclear membrane SUN-domain protein. By creating a bridge with the KASH-domain protein ZYG-12, it connects the nucleus to cytoplasmic filaments and organelles. Matefin/SUN-1 is expressed in the germline where it undergoes specific phosphorylation at its N-terminal domain, which is required for germline development and homologous chromosome pairing. The maternally deposited matefin/SUN-1 is then essential for embryonic development. Here, we show that in embryos, serine 43 of matefin/SUN-1 (S43) is phosphorylated in a CDK-1 dependent manner and is localized throughout the cell cycle mostly to centrosomes. By generating animals expressing phosphodead S43A and phosphomimetic S43E mutations, we show that phosphorylation of S43 is required to maintain centrosome integrity and function, as well as for the localization of ZYG-12 and lamin. Expression of S43E in early embryos also leads to an increase in chromatin structural changes, decreased progeny and to almost complete embryonic lethality. Down regulation of emerin further increases the occurrence of chromatin organization abnormalities, indicating possible collaborative roles for these proteins that is regulated by S43 phosphorylation. Taken together, these results support a role for phosphorylation of serine 43 in matefin/SUN-1 in mitosis.
Collapse
|
47
|
Jahed Z, Soheilypour M, Peyro M, Mofrad MRK. The LINC and NPC relationship – it's complicated! J Cell Sci 2016; 129:3219-29. [DOI: 10.1242/jcs.184184] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The genetic information of eukaryotic cells is enclosed within a double-layered nuclear envelope, which comprises an inner and outer nuclear membrane. Several transmembrane proteins locate to the nuclear envelope; however, only two integral protein complexes span the nuclear envelope and connect the inside of the nucleus to the cytoplasm. The nuclear pore complex (NPC) acts as a gateway for molecular exchange between the interior of the nucleus and the cytoplasm, whereas so-called LINC complexes physically link the nucleoskeleton and the cytoskeleton. In this Commentary, we will discuss recent studies that have established direct functional associations between these two complexes. The assembly of NPCs and their even distribution throughout the nuclear envelope is dependent on components of the LINC complex. Additionally, LINC complex formation is dependent on the successful localization of inner nuclear membrane components of LINC complexes and their transport through the NPC. Furthermore, the architecture of the nuclear envelope depends on both protein complexes. Finally, we will present recent evidence showing that LINC complexes can affect nucleo-cytoplasmic transport through the NPC, further highlighting the importance of understanding the associations of these essential complexes at the nuclear envelope.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
|
49
|
Abstract
The nuclear envelope consists of 2 membranes separated by 30–50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.
Collapse
Affiliation(s)
- Natalie E Cain
- a Department of Molecular and Cellular Biology ; University of California Davis ; Davis , CA USA
| | | |
Collapse
|
50
|
Maizels Y, Gerlitz G. Shaping of interphase chromosomes by the microtubule network. FEBS J 2015; 282:3500-24. [PMID: 26040675 DOI: 10.1111/febs.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
It is well established that microtubule dynamics play a major role in chromosome condensation and localization during mitosis. During interphase, however, it is assumed that the metazoan nuclear envelope presents a physical barrier, which inhibits interaction between the microtubules located in the cytoplasm and the chromatin fibers located in the nucleus. In recent years, it has become apparent that microtubule dynamics alter chromatin structure and function during interphase as well. Microtubule motor proteins transport several transcription factors and exogenous DNA (such as plasmid DNA) from the cytoplasm to the nucleus. Various soluble microtubule components are able to translocate into the nucleus, where they bind various chromatin elements leading to transcriptional alterations. In addition, microtubules may apply force on the nuclear envelope, which is transmitted into the nucleus, leading to changes in chromatin structure. Thus, microtubule dynamics during interphase may affect chromatin spatial organization, as well as transcription, replication and repair.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| |
Collapse
|