1
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025; 26:e202500114. [PMID: 40192223 PMCID: PMC12118340 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Dominik Priesmann
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Rune Busk Damgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| |
Collapse
|
2
|
Cardno A, Kennedy B, Lindon C. Cellular parameters shaping pathways of targeted protein degradation. Commun Biol 2025; 8:691. [PMID: 40316744 PMCID: PMC12048530 DOI: 10.1038/s42003-025-08104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
In recent years the development of proteolysis-targeting chimeras (PROTACs) has enhanced the field of ubiquitin signalling through advancing therapeutic targeted protein degradation (TPD) strategies and generating tools to explore the ubiquitin landscape. However, the interplay between PROTACs and their substrates, and other components of the ubiquitin proteasome system (UPS), raises fundamental questions about cellular parameters that might influence the action of PROTACs and the amenability of a given target to PROTAC-mediated degradation. In this perspective we discuss examples of cellular parameters that have been shown to influence PROTAC sensitivity and consider others likely to be important for PROTAC-mediated target degradation but not yet routinely considered in design of novel TPD strategies: Target localisation and accessibility on the one hand, and expression patterns, localisation and activity of E3 ligases, deubiquitinases (DUBs) and wider ubiquitin machinery on the other, are critical parameters in the exploitation of PROTACs, and establishing a better understanding of these parameters will facilitate the rational design of PROTACs.
Collapse
Affiliation(s)
- Annabel Cardno
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Bryony Kennedy
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Sharma I, Talakayala A, Tiwari M, Asinti S, Kirti PB. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108700. [PMID: 38781635 DOI: 10.1016/j.plaphy.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.
Collapse
Affiliation(s)
- Isha Sharma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324.
| | - Ashwini Talakayala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sarath Asinti
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - P B Kirti
- Agri Biotech Foundation, Rajendranagar, 500030, Hyderabad, India
| |
Collapse
|
4
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
5
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
8
|
Lin CY, Yu CJ, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin-proteasome pathway in ER + breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2120-2135. [PMID: 35917055 DOI: 10.1007/s12094-022-02881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR( +)) (also known as luminal type) is the most prevalent category of breast cancer, comprising ~ 70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR( +) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteasome, and many others. The ubiquitin-proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins. By transcriptional profiling of the HR( +) breast cancer cell lines MCF7 and T47D treated with Palbociclib, we have uncovered a novel mechanism that demonstrates that the CDK4/6 inhibitors suppress the expression of three ubiquitin-conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR( +) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate that the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR( +) breast cancer cells demonstrate dependence on the UBE2C. Our study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
The E3 ubiquitin ligase HECTD1 contributes to cell proliferation through an effect on mitosis. Sci Rep 2022; 12:13160. [PMID: 35915203 PMCID: PMC9343455 DOI: 10.1038/s41598-022-16965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood. Similarly, the roles of ubiquitin chain types beyond homotypic K48 chains in S-phase or branched K11/K48 chains during mitosis, also remain to be fully determined. Our recent findings that HECTD1 ubiquitin ligase activity assembles branched K29/K48 ubiquitin linkages prompted us to evaluate HECTD1 function during the cell cycle. We used transient knockdown and genetic knockout to show that HECTD1 depletion in HEK293T and HeLa cells decreases cell number and we established that this is mediated through loss of ubiquitin ligase activity. Interestingly, we found that HECTD1 depletion increases the proportion of cells with aligned chromosomes (Prometa/Metaphase) and we confirmed this molecularly using phospho-Histone H3 (Ser28) as a marker of mitosis. Time-lapse microscopy of NEBD to anaphase onset established that HECTD1-depleted cells take on average longer to go through mitosis. In line with this data, HECTD1 depletion reduced the activity of the Spindle Assembly Checkpoint, and BUB3, a component of the Mitosis Checkpoint Complex, was identified as novel HECTD1 interactor. BUB3, BUBR1 or MAD2 protein levels remained unchanged in HECTD1-depleted cells. Overall, this study reveals a novel putative role for HECTD1 during mitosis and warrants further work to elucidate the mechanisms involved.
Collapse
|
10
|
Jiang H, Chen Y, Xu X, Li C, Chen Y, Li D, Zeng X, Gao H. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. Clin Transl Med 2022; 12:e770. [PMID: 35343092 PMCID: PMC8958351 DOI: 10.1002/ctm2.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclin C (CCNC) was reported to take part in regulating mitochondria-derived oxidative stress under cisplatin stimulation. However, its effect in gastric cancer is unknown. This study aimed to investigate the role of cyclin C and its ubiquitylation in regulating cisplatin resistance in gastric cancer. METHODS The interaction between HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (HACE1) and cyclin C was investigated by GST pull-down assay, co-immunoprecipitation and ubiquitylation assay. Mitochondria-derived oxidative stress was studied by MitoSOX Red assay, seahorse assay and mitochondrial membrane potential measurement. Cyclin C-associated cisplatin resistance was studied in vivo via xenograft. RESULTS HACE1 catalysed the ubiquitylation of cyclin C by adding Lys11-linked ubiquitin chains when cyclin C translocates to cytoplasm induced by cisplatin treatment. The ubiquitin-modified cyclin C then anchor at mitochondira, which induced mitochondrial fission and ROS synthesis. Depleting CCNC or mutation on the ubiquitylation sites decreased mitochondrial ROS production and reduced cell apoptosis under cisplatin treatment. Xenograft study showed that disrupting cyclin C ubiquitylation by HACE1 conferred impairing cell apoptosis response upon cisplatin administration. CONCLUSIONS Cyclin C is a newly identified substrate of HACE1 E3 ligase. HACE1-mediated ubiquitylation of cyclin C sheds light on a better understanding of cisplatin-associated resistance in gastric cancer patients. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. With cisplatin-induced nuclear-mitochondrial translocation of cyclin C, its ubiquitylation by HACE1 increased mitochondrial fission and mitochondrial-derived oxidative stress, leading to cell apoptosis.
Collapse
Affiliation(s)
- Hong‐yue Jiang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Ying‐ling Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xing‐xing Xu
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Chuan‐yin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yun Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Dong‐ping Li
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiao‐qing Zeng
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Hong Gao
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
- Evidence‐based Medicine Center of Fudan UniversityShanghaiChina
| |
Collapse
|
11
|
Tischer T, Yang J, Barford D. The APC/C targets the Cep152-Cep63 complex at the centrosome to regulate mitotic spindle assembly. J Cell Sci 2022; 135:jcs259273. [PMID: 34878135 PMCID: PMC8917351 DOI: 10.1242/jcs.259273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase-promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions, including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and an APC/C substrate. Previous studies have shown that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitylation of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.
Collapse
Affiliation(s)
- Thomas Tischer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
12
|
Huntingtin Ubiquitination Mechanisms and Novel Possible Therapies to Decrease the Toxic Effects of Mutated Huntingtin. J Pers Med 2021; 11:jpm11121309. [PMID: 34945781 PMCID: PMC8709430 DOI: 10.3390/jpm11121309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Huntington Disease (HD) is a dominant, lethal neurodegenerative disorder caused by the abnormal expansion (>35 copies) of a CAG triplet located in exon 1 of the HTT gene encoding the huntingtin protein (Htt). Mutated Htt (mHtt) easily aggregates, thereby inducing ER stress that in turn leads to neuronal injury and apoptosis. Therefore, both the inhibition of mHtt aggregate formation and the acceleration of mHtt degradation represent attractive strategies to delay HD progression, and even for HD treatment. Here, we describe the mechanism underlying mHtt degradation by the ubiquitin–proteasome system (UPS), which has been shown to play a more important role than the autophagy–lysosomal pathway. In particular, we focus on E3 ligase proteins involved in the UPS and detail their structure–function relationships. In this framework, we discuss the possible exploitation of PROteolysis TArgeting Chimeras (PROTACs) for HD therapy. PROTACs are heterobifunctional small molecules that comprise two different ligands joined by an appropriate linker; one of the ligands is specific for a selected E3 ubiquitin ligase, the other ligand is able to recruit a target protein of interest, in this case mHtt. As a consequence of PROTAC binding, mHtt and the E3 ubiquitin ligase can be brought to a relative position that allows mHtt to be ubiquitinated and, ultimately, allows a reduction in the amount of mHtt in the cell.
Collapse
|
13
|
Bertolin G, Alves-Guerra MC, Cheron A, Burel A, Prigent C, Le Borgne R, Tramier M. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2. Life Sci Alliance 2021; 4:4/6/e202000806. [PMID: 33820826 PMCID: PMC8046421 DOI: 10.26508/lsa.202000806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The multifunctional Ser/Thr kinase AURKA uses the Inner Mitochondrial Membrane receptor PHB2 and MAP1LC3 as a signalling platform to orchestrate the elimination of dysfunctional mitochondria. Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin–independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.
Collapse
Affiliation(s)
- Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marie-Clotilde Alves-Guerra
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Paris, France
| | - Angélique Cheron
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Agnès Burel
- University of Rennes, MRic CNRS, INSERM, Structure Fédérative de Recherche (SFR) Biosit, UMS 3480, Rennes, France
| | - Claude Prigent
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Roland Le Borgne
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| |
Collapse
|
14
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
15
|
Kim HJ, Kim J. OTUD6A Is an Aurora Kinase A-Specific Deubiquitinase. Int J Mol Sci 2021; 22:ijms22041936. [PMID: 33669244 PMCID: PMC7919836 DOI: 10.3390/ijms22041936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
Aurora kinases are serine/threonine kinases required for cell proliferation and are overexpressed in many human cancers. Targeting Aurora kinases has been a therapeutic strategy in cancer treatment. Here, we attempted to identify a deubiquitinase (DUB) that regulates Aurora kinase A (Aurora-A) protein stability and/or kinase activity as a potential cancer therapeutic target. Through pull-down assays with the human DUB library, we identified OTUD6A as an Aurora-A-specific DUB. OTUD6A interacts with Aurora-A through OTU and kinase domains, respectively, and deubiquitinates Aurora-A. Notably, OTUD6A promotes the protein half-life of Aurora-A and activates Aurora-A by increasing phosphorylation at threonine 288 of Aurora-A. From qPCR screening, we identified and validated that the cancer gene CKS2 encoding Cyclin-dependent kinases regulatory subunit 2 is the most upregulated cell cycle regulator when OTUD6A is overexpressed. The results suggest that OTUD6A may serve as a therapeutic target in human cancers.
Collapse
|
16
|
Blount JR, Johnson SL, Todi SV. Unanchored Ubiquitin Chains, Revisited. Front Cell Dev Biol 2020; 8:582361. [PMID: 33195227 PMCID: PMC7659471 DOI: 10.3389/fcell.2020.582361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because of its myriad post-translational effects that control normal cellular processes and are implicated in various diseases. By being covalently conjugated onto other proteins, ubiquitin changes their interaction landscape - fostering new interactions as well as inhibiting others - and ultimately deciding the fate of its substrates and controlling pathways that span most cell physiology. Ubiquitin can be attached onto other proteins as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the types of poly-ubiquitin species generated are ones detached from another substrate - comprising solely ubiquitin as their constituent - referred to as unanchored, or free chains. Considered to be toxic byproducts, these species have recently emerged to have specific physiological functions in immune pathways and during cell stress. Free chains also do not appear to be detrimental to multi-cellular organisms; they can be active members of the ubiquitination process, rather than corollary species awaiting disassembly into mono-ubiquitin. Here, we summarize past and recent studies on unanchored ubiquitin chains, paying special attention to their emerging roles as second messengers in several signaling pathways. These investigations paint complex and flexible outcomes for free ubiquitin chains, and present a revised model of unanchored poly-ubiquitin biology that is in need of additional investigation.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
He D, Damaris RN, Li M, Khan I, Yang P. Advances on Plant Ubiquitylome-From Mechanism to Application. Int J Mol Sci 2020; 21:E7909. [PMID: 33114409 PMCID: PMC7663383 DOI: 10.3390/ijms21217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins enable modulation of their structure, function, localization and turnover. To date, over 660 PTMs have been reported, among which, reversible PTMs are regarded as the key players in cellular signaling. Signaling mediated by PTMs is faster than re-initiation of gene expression, which may result in a faster response that is particularly crucial for plants due to their sessile nature. Ubiquitylation has been widely reported to be involved in many aspects of plant growth and development and it is largely determined by its target protein. It is therefore of high interest to explore new ubiquitylated proteins/sites to obtain new insights into its mechanism and functions. In the last decades, extensive protein profiling of ubiquitylation has been achieved in different plants due to the advancement in ubiquitylated proteins (or peptides) affinity and mass spectrometry techniques. This obtained information on a large number of ubiquitylated proteins/sites helps crack the mechanism of ubiquitylation in plants. In this review, we have summarized the latest advances in protein ubiquitylation to gain comprehensive and updated knowledge in this field. Besides, the current and future challenges and barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| |
Collapse
|
18
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
19
|
Li Y, Lan Q, Gao Y, Xu C, Xu Z, Wang Y, Chang L, Wu J, Deng Z, He F, Finley D, Xu P. Ubiquitin Linkage Specificity of Deubiquitinases Determines Cyclophilin Nuclear Localization and Degradation. iScience 2020; 23:100984. [PMID: 32240951 PMCID: PMC7115106 DOI: 10.1016/j.isci.2020.100984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin chain specificity has been described for some deubiquitinases (DUBs) but lacks a comprehensive profiling in vivo. We used quantitative proteomics to compare the seven lysine-linked ubiquitin chains between wild-type yeast and its 20 DUB-deletion strains, which may reflect the linkage specificity of DUBs in vivo. Utilizing the specificity and ubiquitination heterogeneity, we developed a method termed DUB-mediated identification of linkage-specific ubiquitinated substrates (DILUS) to screen the ubiquitinated lysine residues on substrates modified with certain chains and regulated by specific DUB. Then we were able to identify 166 Ubp2-regulating substrates with 244 sites potentially modified with K63-linked chains. Among these substrates, we further demonstrated that cyclophilin A (Cpr1) modified with K63-linked chain on K151 site was regulated by Ubp2 and mediated the nuclear translocation of zinc finger protein Zpr1. The K48-linked chains at non-K151 sites of Cpr1 were mainly regulated by Ubp3 and served as canonical signals for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Qiuyan Lan
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Cong Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China; School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Guizhou University School of Medicine, Guiyang 550025, China; Second Clinical Medicine Collage, Guangzhou University Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
20
|
Dougherty SE, Maduka AO, Inada T, Silva GM. Expanding Role of Ubiquitin in Translational Control. Int J Mol Sci 2020; 21:E1151. [PMID: 32050486 PMCID: PMC7037965 DOI: 10.3390/ijms21031151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.
Collapse
Affiliation(s)
- Shannon E. Dougherty
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Austin O. Maduka
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| |
Collapse
|
21
|
Mendes ML, Fougeras MR, Dittmar G. Analysis of ubiquitin signaling and chain topology cross-talk. J Proteomics 2020; 215:103634. [PMID: 31918034 DOI: 10.1016/j.jprot.2020.103634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/13/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is a powerful post-translational modification implicated in many cellular processes. Although ubiquitination is associated with protein degradation, depending on the topology of polyubiquitin chains, protein ubiquitination is connected to non-degradative events in DNA damage response, cell cycle control, immune response, trafficking, intracellular localization, and vesicle fusion events. It has been shown that a ubiquitin chain can contain two or more topologies at the same time. These branched chains add another level of complexity to ubiquitin signaling, increasing its versatility and specificity. Mass spectrometry-based proteomics has been playing an important role in the identification of all types of ubiquitin chains and linkages. This review aims to provide an overview of ubiquitin chain topology and associated signaling pathways and discusses the MS-based proteomic methodologies used to determine such topologies. SIGNIFICANCE: Ubiquitination plays important roles in many cellular processes. Proteins can be monoubiquitinated or polyubiquitinated forming non-branched or branched chains in a high number of possible combinations, each associated with different cellular processes. The detection and the topology of ubiquitin chains is thus of extreme importance in order to explain such processes. Advances in mass spectrometry based proteomics allowed for the discovery and topology mapping of many ubiquitin chains. This review revisits the state of the art in ubiquitin chain identification by mass spectrometry and gives an insight on the implication of such chains in many cellular processes.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Miriam R Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
22
|
Elu N, Lectez B, Ramirez J, Osinalde N, Mayor U. Mass Spectrometry-Based Characterization of Ub- and UbL-Modified Proteins. Methods Mol Biol 2020; 2051:265-276. [PMID: 31552633 DOI: 10.1007/978-1-4939-9744-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulation by ubiquitin (Ub) and ubiquitin-like (UbL) modifiers can confer their substrate proteins a myriad of assignments, such as inducing protein-protein interactions, the internalization of membrane proteins, or their degradation via the proteasome. The underlying code regulating those diverse endpoints appears to be based on the topology of the ubiquitin chains formed.Experimental characterization of the specific regulation mediated by Ub and UbLs is not trivial. The substoichiometric levels of Ub- and UbL-modified proteins greatly limit their analytical detection in a background of more abundant proteins. Therefore, modified proteins or peptides must be enriched prior to any downstream detection analysis. For that purpose, we recently developed a GFP-tag based isolation strategy. Here we illustrate the usefulness of combining GFP-tag isolation strategy with mass spectrometry (MS) to identify Ub- and UbL-modified residues within the GFP-tagged protein, as well as to uncover the types of Ub and UbL chains formed.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
23
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
24
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
25
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
26
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
27
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
28
|
Monitoring stress-induced autophagic engulfment and degradation of the 26S proteasome in mammalian cells. Methods Enzymol 2019; 619:337-366. [PMID: 30910028 DOI: 10.1016/bs.mie.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Almost 70 years after the discovery of the lysosome, and about four decades following the unraveling of ubiquitin as a specific "mark of death," the field of protein turnover-the numerous processes it regulates, the pathologies resulting from its dysregulation, and the drugs that have been developed to target them-is still growing exponentially. Accordingly, the need for new technologies and methods is ever growing. One interesting question in the field is the mechanism(s) by which the "predators become prey". We have reported recently that the 26S proteasome, the catalytic arm of the ubiquitin system, is degraded by the autophagy-lysosome machinery, in a process requiring specific ubiquitination of the proteasome, and subsequent recognition by the shuttle protein p62/SQSTM1. Studying the modification(s), recognition sites, engulfment, and breakdown of the 26S proteasome via such "proteaphagy" has required the use of microscopy, subcellular fractionation, 'classical biochemistry', and proteomics. In this chapter, we present the essentials of these protocols, with emphasis on the refinements we have introduced in order for them to better suit the particular study of proteaphagy.
Collapse
|
29
|
Kernan J, Bonacci T, Emanuele MJ. Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1924-1933. [PMID: 30290241 DOI: 10.1016/j.bbamcr.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.
Collapse
Affiliation(s)
- Jennifer Kernan
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
30
|
Feng T, Deng L, Lu X, Pan W, Wu Q, Dai J. Ubiquitin-conjugating enzyme UBE2J1 negatively modulates interferon pathway and promotes RNA virus infection. Virol J 2018; 15:132. [PMID: 30157886 PMCID: PMC6114777 DOI: 10.1186/s12985-018-1040-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Viral infection activates innate immune pathways and interferons (IFNs) play a pivotal role in the outcome of a viral infection. Ubiquitin modifications of host and viral proteins significantly influence the progress of virus infection. Ubiquitin-conjugating enzyme E2s (UBE2) have the capacity to determine ubiquitin chain topology and emerge as key mediators of chain assembly. Methods In this study, we screened the functions of 34 E2 genes using an RNAi library during Dengue virus (DENV) infection. RNAi and gene overexpression approaches were used to study the gene function in viral infection and interferon signaling. Results We found that silencing UBE2J1 significantly impaired DENV infection, while overexpression of UBE2J1 enhanced DENV infection. Further studies suggested that type I IFN expression was significantly increased in UBE2J1 silenced cells and decreased in UBE2J1 overexpressed cells. Reporter assay suggested that overexpression of UBE2J1 dramatically suppressed RIG-I directed IFNβ promoter activation. Finally, we have confirmed that UBE2J1 can facilitate the ubiquitination and degradation of transcription factor IFN regulatory factor 3 (IRF3). Conclusion These results suggest that UBE2 family member UBE2J1 can negatively regulate type I IFN expression, thereby promote RNA virus infection. Electronic supplementary material The online version of this article (10.1186/s12985-018-1040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, 199 Ren-ai Road, Suzhou, 215123, People's Republic of China
| | - Lei Deng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, 199 Ren-ai Road, Suzhou, 215123, People's Republic of China
| | - Xiaochuan Lu
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, 199 Ren-ai Road, Suzhou, 215123, People's Republic of China
| | - Wen Pan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, 199 Ren-ai Road, Suzhou, 215123, People's Republic of China
| | - Qihan Wu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, People's Republic of China.
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, 199 Ren-ai Road, Suzhou, 215123, People's Republic of China. .,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
31
|
Bonacci T, Suzuki A, Grant GD, Stanley N, Cook JG, Brown NG, Emanuele MJ. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J 2018; 37:e98701. [PMID: 29973362 PMCID: PMC6092620 DOI: 10.15252/embj.201798701] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle-dependent oscillations in cyclin-dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor-dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle-regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11-linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C-mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, Wu Q, Wang P, Dai J. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLoS Pathog 2018; 14:e1007287. [PMID: 30142214 PMCID: PMC6126873 DOI: 10.1371/journal.ppat.1007287] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/06/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
In order to eliminate viral infections, hundreds of interferon-stimulated genes (ISGs) are induced via type I interferons (IFNs). However, the functions and mechanisms of most ISGs are largely unclear. A tripartite motif (TRIM) protein encoding gene TRIM69 is induced by dengue virus (DENV) infection as an ISG. TRIM69 restricts DENV replication, and its RING domain, which has the E3 ubiquitin ligase activity, is critical for its antiviral activity. An in vivo study further confirmed that TRIM69 contributes to the control of DENV infection in immunocompetent mice. Unlike many other TRIM family members, TRIM69 is not involved in modulation of IFN signaling. Instead, TRIM69 interacts with DENV Nonstructural Protein 3 (NS3) directly and mediates its polyubiquitination and degradation. Finally, Lys104 of NS3 is identified as the target of TRIM69-mediated ubiquitination. Our study demonstrates that TRIM69 restricts DENV replication by specifically ubiquitinating a viral nonstructural protein.
Collapse
Affiliation(s)
- Kezhen Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Chunling Zou
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Xiujuan Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Chenxiao Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Tingting Feng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Wen Pan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Qihan Wu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai Institute of Planned Parenthood Research, Shanghai, P. R. China
| | - Penghua Wang
- Department Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai Institute of Planned Parenthood Research, Shanghai, P. R. China
| |
Collapse
|
33
|
USP35 regulates mitotic progression by modulating the stability of Aurora B. Nat Commun 2018; 9:688. [PMID: 29449677 PMCID: PMC5814453 DOI: 10.1038/s41467-018-03107-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2018] [Indexed: 01/16/2023] Open
Abstract
Although approximately 100 deubiquitinating enzymes (DUBs) are encoded in the human genome, very little is known about the DUBs that function in mitosis. Here, we demonstrate that DUB USP35 functions as a mitotic regulator by controlling the protein levels and downstream signaling of Aurora B and the depletion of USP35 eventually leads to several mitotic defects including cytokinesis failures. USP35 binds to and deubiquitinates Aurora B, and inhibits the APCCDH1-mediated proteasomal degradation of Aurora B, thus maintaining its steady-state levels during mitosis. In addition, the loss of USP35 decreases the phosphorylation of histone H3-Ser10, an Aurora B substrate. Finally, the transcription factor FoxM1 promotes the expression of USP35, as well as that of Aurora B, during the cell cycle. Our findings suggest that USP35 regulates the stability and function of Aurora B by blocking APCCDH1-induced proteasomal degradation, thereby controlling mitotic progression. Aurora B kinase is a member of the chromosomal passenger complex, which is an indispensable regulator of mitosis. Here the authors show that the deubiquitinating enzyme USP35 has a role in mitotic progression by inhibiting proteasomal degradation of Aurora B kinase, leading to its activation.
Collapse
|
34
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
35
|
Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM. Assessing Different E3 Ligases for Small Molecule Induced Protein Ubiquitination and Degradation. ACS Chem Biol 2017; 12:2570-2578. [PMID: 28767222 DOI: 10.1021/acschembio.7b00485] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteolysis targeting chimera (PROTAC) technology, the recruitment of E3 ubiquitin ligases to induce the degradation of a protein target, is rapidly impacting chemical biology, as well as modern drug development. Here, we explore the universality of this approach by evaluating different E3 ubiquitin ligases, engineered in their substrate binding domains to accept a recruiting ligand. Five out of six E3 ligases were found to be amenable to recruitment for target degradation. Taking advantage of the tight spatiotemporal control of inducing ubiquitination on a preselected target in living cells, we focused on two of the engineered E3 ligases, βTRCP and parkin, to unravel their ubiquitination characteristics in comparison with the PROTAC-recruited endogenous E3 ligases VHL and cereblon.
Collapse
Affiliation(s)
- Philipp Ottis
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | - Momar Toure
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | - Philipp M. Cromm
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | - Eunhwa Ko
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | - Jeffrey L. Gustafson
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | - Craig M. Crews
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut, United States
- Department
of Pharmacology, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
36
|
Rana ASJB, Ge Y, Strieter ER. Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys11/Lys48 Branched Ubiquitin Chains. J Proteome Res 2017; 16:3363-3369. [PMID: 28737031 DOI: 10.1021/acs.jproteome.7b00381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of cellular signaling events are tightly regulated by a diverse set of ubiquitin chains. Recent work has suggested that branched ubiquitin chains composed of Lys11 and Lys48 isopeptide linkages play a critical role in regulating cell cycle progression. Yet, endogenous Lys11/Lys48 branched chains could not be detected. By combining a Lys11 linkage specific antibody with high-resolution middle-down mass spectrometry (an approach termed UbiChEM-MS) we sought to identify endogenous Lys11/Lys48 branched ubiquitin chains in cells. Using asynchronous cells, we find that Lys11-linked branched chains can only be detected upon cotreatment with a proteasome and nonselective deubiquitinase inhibitor. Releasing cells from mitotic arrest results in a marked accumulation of Lys11/Lys48 branched chains in which branch points represent ∼3-4% of the total ubiquitin population. This report highlights the utility of UbiChEM-MS in characterizing the architecture of Lys11 Ub chains under various cellular conditions and corroborates the formation of Lys11/Lys48 branched chains during mitosis.
Collapse
Affiliation(s)
- Ambar S J B Rana
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Human Proteomics Program, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
37
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
38
|
Abstract
Ubiquitylation is essential for signal transduction as well as cell division and differentiation in all eukaryotes. Substrate modifications range from a single ubiquitin molecule to complex polymeric chains, with different types of ubiquitylation often eliciting distinct outcomes. The recent identification of novel chain topologies has improved our understanding of how ubiquitylation establishes precise communication within cells. Here, we discuss how the increasing complexity of ubiquitylation is employed to ensure robust and faithful signal transduction in eukaryotic cells.
Collapse
|
39
|
Bowerman S, Rana ASJB, Rice A, Pham GH, Strieter ER, Wereszczynski J. Determining Atomistic SAXS Models of Tri-Ubiquitin Chains from Bayesian Analysis of Accelerated Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:2418-2429. [PMID: 28482663 DOI: 10.1021/acs.jctc.7b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become an increasingly popular technique for characterizing the solution ensemble of flexible biomolecules. However, data resulting from SAXS is typically low-dimensional and is therefore difficult to interpret without additional structural knowledge. In theory, molecular dynamics (MD) trajectories can provide this information, but conventional simulations rarely sample the complete ensemble. Here, we demonstrate that accelerated MD simulations can be used to produce higher quality models in shorter time scales than standard simulations, and we present an iterative Bayesian Monte Carlo method that is able to identify multistate ensembles without overfitting. This methodology is applied to several ubiquitin trimers to demonstrate the effect of linkage type on the solution states of the signaling protein. We observe that the linkage site directly affects the solution flexibility of the trimer and theorize that this difference in plasticity contributes to their disparate roles in vivo.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Ambar S J B Rana
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Amy Rice
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| |
Collapse
|
40
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
41
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
42
|
Wright FA, Wojcikiewicz RJH. Chapter 4 - Inositol 1,4,5-Trisphosphate Receptor Ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:141-59. [PMID: 27378757 DOI: 10.1016/bs.pmbts.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large (∼300kDa) proteins that associate into tetrameric ion channels in the endoplasmic reticulum (ER) membrane. Activation and opening of the channel upon binding of IP3 and Ca(2+) allows the flow of Ca(2+) ions from stores within the ER lumen to the cytosol, thereby promoting a number of Ca(2+)-dependent cellular events, such as secretion, neurotransmitter release, and cell division. Intriguingly, it appears that the same conformational change that IP3Rs undergo during activation makes them a target for degradation by the ubiquitin-proteasome pathway and that this mode of processing allows the cell to tune its internal Ca(2+) response to extracellular signals. Here, we review recent studies showing that activated IP3Rs interact with an array of proteins that mediate their degradation, that IP3Rs are modified by a complex array of ubiquitin conjugates, that this ubiquitination and degradation functions to regulate IP3-mediated Ca(2+) responses in the cell, and that mutations to different proteins involved in IP3R degradation result in a set of similar diseases.
Collapse
Affiliation(s)
- F A Wright
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - R J H Wojcikiewicz
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
43
|
Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A 2016; 113:1540-5. [PMID: 26811472 DOI: 10.1073/pnas.1522423113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most metazoan E3 ligases contain a signature RING domain that promotes the transfer of ubiquitin from the active site of E2 conjugating enzymes to lysine residues in substrates. Although these RING-E3s depend on E2 enzymes for catalysis, how they turn on their E2s at the right time and place remains poorly understood. Here we report a phosphorylation-dependent mechanism that ensures timely activation of the E2 Ube2S by its RING-E3, the anaphase-promoting complex (APC/C); while phosphorylation of a specific serine residue in the APC/C coactivator Cdc20 prevents delivery of Ube2S to the APC/C, removal of this mark by PP2A(B56) allows Ube2S to bind the APC/C and catalyze ubiquitin chain elongation. PP2A(B56) also stabilizes kinetochore-microtubule attachments to shut off the spindle checkpoint, suggesting that cells regulate the E2-E3 interplay to coordinate ubiquitination with critical events during cell division.
Collapse
|
44
|
Lindon C, Grant R, Min M. Ubiquitin-Mediated Degradation of Aurora Kinases. Front Oncol 2016; 5:307. [PMID: 26835416 PMCID: PMC4716142 DOI: 10.3389/fonc.2015.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting of these critical mitotic regulators and discuss the different factors that contribute to proteolytic control of Aurora kinase activity in the cell.
Collapse
Affiliation(s)
- Catherine Lindon
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Mingwei Min
- Department of Cell Biology, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
45
|
Ramirez J, Min M, Barrio R, Lindon C, Mayor U. Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples. Methods Mol Biol 2016; 1449:193-202. [PMID: 27613036 DOI: 10.1007/978-1-4939-3756-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.g., neurotransmitter release is only carried out in neuronal cells). Moreover, these processes are often highly temporally dynamic. It is essential therefore to use the right system for each biological question, so that we can characterize pathways specifically in the tissue or cells of interest. However, low stoichiometry, and the unstable nature of many ubiquitin conjugates, presents a technical barrier to studying this modification in vivo. Here, we describe two approaches to isolate ubiquitinated proteins to high purity. The first one favors isolation of the whole mixture of ubiquitinated material from a given tissue or cell type, generating a survey of the ubiquitome landscape for a specific condition. The second one favors the isolation of just one specific protein, in order to facilitate the characterization of its ubiquitinated fraction. In both cases, highly stringent denaturing buffers are used to minimize the presence of contaminating material in the sample.
Collapse
Affiliation(s)
- Juanma Ramirez
- Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia Fakultatea, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Mingwei Min
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Catherine Lindon
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Ugo Mayor
- Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia Fakultatea, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|