1
|
Shao WQ, Li YT, Zhou X, Zhang SG, Fan MH, Zhang D, Chen ZM, Yi CH, Wang SH, Zhu WW, Lu M, Chen JS, Lin J, Zhou Y. Cholesterol suppresses AMFR-mediated PDL1 ubiquitination and degradation in HCC. Mol Cell Biochem 2025; 480:1807-1818. [PMID: 39231894 PMCID: PMC11842428 DOI: 10.1007/s11010-024-05106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Yi-Tong Li
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Guo Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Ming-Hao Fan
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Dong Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhen-Mei Chen
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen-He Yi
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Hao Wang
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Song Chen
- Depatment of Hepatobiliary Surgery, Taizhou Fourth People's Hospital, Jiangsu, 214527, China
| | - Jing Lin
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Yu Zhou
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Zheng J, Cardoen B, Ortiz-Silva M, Hamarneh G, Nabi IR. Comparative Analysis of SPLICS and MCS-DETECT for Detecting Mitochondria-ER Contact Sites (MERCs). CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251313721. [PMID: 40115170 PMCID: PMC11923443 DOI: 10.1177/25152564251313721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 03/23/2025]
Abstract
Detection of mitochondria-ER contacts (MERCs) from diffraction limited confocal images commonly uses fluorescence colocalization analysis of mitochondria and endoplasmic reticulum (ER) as well as split fluorescent probes, such as the split-GFP-based contact site sensor (SPLICS). However, inter-organelle distances (∼10-60 nm) for MERCs are lower than the 200-250 nm diffraction limited resolution obtained by standard confocal microscopy. Super-resolution microscopy of 3D volume analysis provides a two-fold resolution improvement (∼120 nm XY; 250 nm Z), which remains unable to resolve MERCs. MCS-DETECT, a membrane contact site (MCS) detection algorithm faithfully detects elongated ribosome-studded riboMERCs when applied to 3D STED super-resolution image volumes. Here, we expressed the SPLICSL reporter in HeLa cells co-transfected with the ER reporter RFP-KDEL and label fixed cells with antibodies to RFP and the mitochondrial protein TOM20. MCS-DETECT analysis of 3D STED volumes was compared to contacts determined by co-occurrence colocalization analysis of mitochondria and ER or the SPLICSL probe. Percent mitochondria coverage by MCS-DETECT derived contacts was significantly smaller than those obtained for colocalization analysis or SPLICSL, and more closely matched contact site metrics obtained by 3D electron microscopy. Further, STED analysis localized a subset of the SPLICSL label to mitochondria with some SPLICSL puncta observed to be completely enveloped by mitochondria in 3D views. These data suggest that MCS-DETECT reports on a limited set of MERCs that more closely corresponds to those observed by EM.
Collapse
Affiliation(s)
- Jieyi Zheng
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Milene Ortiz-Silva
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ivan R Nabi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Zheng X, Li A, Qiu J, Yan G, Ji Y, Wang G. β-N-methylamino-L-alanine production, photosynthesis and transcriptional expression in a possible mutation strain and a wild strain of Thalassiosira minima. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135301. [PMID: 39053058 DOI: 10.1016/j.jhazmat.2024.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated as an important environmental trigger of neurodegenerative diseases in humans. However, the biosynthesis mechanism of BMAA in marine diatoms is still unknown. In the present study, the strain of diatom Thalassiosira minima almost lost the biosynthesis ability for BMAA after a long-term subculture in our laboratory. The production of BMAA-containing proteins in the mutant strain of T. minima reduced to 18.2 % of that in the wild strain, meanwhile the cell size decreased but pigment content increased in the mutant strain. Take consideration of our previous transcriptional data on the mixed diatom and cyanobacterium cultures, the current transcriptome analysis showed four identical and highly correlated KEGG pathways associated with the accumulation of misfolded proteins in diatom, including ribosome, proteasome, SNARE interactions in vesicle transport, and protein processing in the endoplasmic reticulum. Analysis of amino acids and transcriptional information suggested that amino acid synthesis and degradation are associated with the biosynthesis of BMAA-containing proteins. In addition, a reduction in the precision of ubiquitination-mediated protein hydrolysis and vesicular transport by the COPII system will exacerbate the accumulation of BMAA-containing proteins in diatoms.
Collapse
Affiliation(s)
- Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Jeon J, Lee SY. CK2 inhibitor CX4945 inhibits collagen degradation of HaCaT human keratinocyte cells via attenuation of MMP-1 secretion. Mol Biol Rep 2023; 50:9691-9698. [PMID: 37658930 DOI: 10.1007/s11033-023-08708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION During skin aging, the extracellular matrix (ECM) concomitantly breaks down. Out of the various protein components that comprise ECM, collagen is the most abundant one. Matrix metalloproteinase-1 (MMP-1) is a major collagenase that can degrade collagen. Therefore, the inhibition of MMP-1 may be critical for skin aging prevention. CX4945 is an inhibitor of casein kinase 2 and shows anticancer effects on various types of cancer cells. METHODS AND RESULTS In this report, we investigated the MMP-1-inhibiting effect of CX4945 in HaCaT human keratinocyte cells. We performed zymography assays, Western blot analysis and immunoprecipitation assay to investigate the anti-MMP-1 effects of CX4945. CX4945 was found to inhibit collagen degradation via attenuation of the MMP-1 secretion out of HaCaT cells. This activity of CX4945 may be mediated by the induction of MMP-1 ubiquitylation via c-Jun N-terminal kinase (JNK) signaling. In wound healing cell migration assay, CX4945 also showed suppressive effect on the migration of HaCaT cells. This finding was closely related to the attenuation of CREB transcription factor via the downregulation of ERK mitogen-activated protein kinase as observed in Western blot analysis. CONCLUSION Our report suggests that the inhibitory effects of CX4945 on MMP-1 in epidermal cells may offer a basis for further studying its therapeutic potential as an anti-wrinkle agent.
Collapse
Affiliation(s)
- Jusu Jeon
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea.
| |
Collapse
|
5
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
6
|
Sun L, Zhang H, Zhang H, Lou X, Wang Z, Wu Y, Yang X, Chen D, Guo B, Zhang A, Qian F. Staphylococcal virulence factor HlgB targets the endoplasmic-reticulum-resident E3 ubiquitin ligase AMFR to promote pneumonia. Nat Microbiol 2023; 8:107-120. [PMID: 36593296 DOI: 10.1038/s41564-022-01278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus invades cells and persists intracellularly, causing persistent inflammation that is notoriously difficult to treat. Here we investigated host-pathogen interactions underlying intracellular S. aureus infection in macrophages and discovered that the endoplasmic reticulum (ER) is an important cellular compartment for intracellular S. aureus infection. Using CRISPR-Cas9 guide RNA library screening, we determined that the autocrine motility factor receptor (AMFR), an ER-resident E3 ubiquitin ligase, played an essential role in mediating intracellular S. aureus-induced inflammation. AMFR directly interacted with TAK1-binding protein 3 (TAB3) in the ER, inducing K27-linked polyubiquitination of TAB3 on lysine 649 and promoting TAK1 activation. Moreover, the virulence factor γ-haemolysin B (HIgB) of S. aureus bound to the AMFR and regulated TAB3. Our findings highlight an unknown role of AMFR in intracellular S. aureus infection-induced pneumonia and suggest that pharmacological interruption of AMFR-mediated TAB3 signalling cascades and HIgB targeting may prevent invasive staphylococci-mediated pneumonia.
Collapse
Affiliation(s)
- Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Lou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiming Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
8
|
Morgado-Cáceres P, Liabeuf G, Calle X, Briones L, Riquelme JA, Bravo-Sagua R, Parra V. The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells. Front Cell Dev Biol 2022; 10:946678. [PMID: 36060801 PMCID: PMC9437272 DOI: 10.3389/fcell.2022.946678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.
Collapse
Affiliation(s)
- Pablo Morgado-Cáceres
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Gianella Liabeuf
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Facultad de Salud y Ciencias Sociales, Escuela de Nutrición y Dietética, Universidad de las Américas, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lautaro Briones
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime A. Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Red de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| |
Collapse
|
9
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
11
|
The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity 2021; 54:2042-2056.e8. [PMID: 34407391 DOI: 10.1016/j.immuni.2021.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/20/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.
Collapse
|
12
|
Chen J, Bassot A, Giuliani F, Simmen T. Amyotrophic Lateral Sclerosis (ALS): Stressed by Dysfunctional Mitochondria-Endoplasmic Reticulum Contacts (MERCs). Cells 2021; 10:cells10071789. [PMID: 34359958 PMCID: PMC8304209 DOI: 10.3390/cells10071789] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which there is currently no cure. Progress in the characterization of other neurodegenerative mechanisms has shifted the spotlight onto an intracellular structure called mitochondria-endoplasmic reticulum (ER) contacts (MERCs) whose ER portion can be biochemically isolated as mitochondria-associated membranes (MAMs). Within the central nervous system (CNS), these structures control the metabolic output of mitochondria and keep sources of oxidative stress in check via autophagy. The most relevant MERC controllers in the ALS pathogenesis are vesicle-associated membrane protein-associated protein B (VAPB), a mitochondria-ER tether, and the ubiquitin-specific chaperone valosin containing protein (VCP). These two systems cooperate to maintain mitochondrial energy output and prevent oxidative stress. In ALS, mutant VAPB and VCP take a central position in the pathology through MERC dysfunction that ultimately alters or compromises mitochondrial bioenergetics. Intriguingly, both proteins are targets themselves of other ALS mutant proteins, including C9orf72, FUS, or TDP-43. Thus, a new picture emerges, where different triggers cause MERC dysfunction in ALS, subsequently leading to well-known pathological changes including endoplasmic reticulum (ER) stress, inflammation, and motor neuron death.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
| | - Arthur Bassot
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
| | - Fabrizio Giuliani
- Department of Medicine (Neurology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (J.C.); (A.B.)
- Correspondence: ; Tel.: +1-780-492-1546
| |
Collapse
|
13
|
Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J. DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun 2021; 559:141-147. [PMID: 33940385 DOI: 10.1016/j.bbrc.2021.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, and renal tubular cell dysfunction contributes to the pathogenesis of many kidney diseases. Our previous study demonstrated that dual-specificity protein phosphatase 1 (DUSP1) reduced hyperglycemia-mediated mitochondrial damage; however, its role in hyperglycemia-driven dysfunction of tubular cells is still not fully understood. In this study, we found that DUSP1 is reduced in human proximal tubular epithelial (HK-2) cells under high-glucose conditions. DUSP1 overexpression in HK-2 cells partially restored autophagic flux, improved mitochondrial function, and reduced reactive oxygen species generation and cell apoptosis under high-glucose conditions. Surprisingly, overexpressing DUSP1 abolished the decrease in mitochondrial parkin expression caused by high-glucose stimulation. In addition, knockdown of parkin in HK-2 cells reversed the effects of DUSP1 overexpression on mitophagy and apoptosis under high-glucose conditions. Overall, these data indicate that DUSP1 plays a defensive role in the pathogenesis of DN by restoring parkin-mediated mitophagy, suggesting that it may be considered a prospective therapeutic strategy for the amelioration of DN.
Collapse
Affiliation(s)
- Chang Lu
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Bo Wu
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuojun Liao
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Ming Xue
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Zhouping Zou
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Jianxun Feng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| | - Junqin Sheng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| |
Collapse
|
14
|
Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S, Yin H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol 2021; 41:101919. [PMID: 33740503 PMCID: PMC7995661 DOI: 10.1016/j.redox.2021.101919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in cholesterol biosynthesis and the target for cholesterol-lowering therapy. Acetaldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxifying ethanol-derived acetaldehyde and endogenous lipid aldehydes derived from lipid peroxidation. Epidemiological and Genome Wide Association Studies (GWAS) have linked an inactive ALDH2 rs671 variant, responsible for alcohol flush in nearly 8% world population and 40% of Asians, with cholesterol levels and higher risk of cardiovascular disease (CVD) but the underlying mechanism remains elusive. Here we find that the cholesterol levels in the serum and liver of ALDH2 knockout (AKO) and ALDH2 rs671 knock-in (AKI) mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways. Mechanistically, mitochondrial ALDH2 translocates to the endoplasmic reticulum to promote the formation of GP78/Insig1/HMGCR complex to increase HMGCR degradation through ubiquitination. Conversely, ALDH2 mutant or ALDH2 deficiency in AKI or AKO mice stabilizes HMGCR, resulting in enhanced cholesterol synthesis, which can be reversed by Lovastatin. Moreover, ALDH2-regulated cholesterol synthesis is linked to the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). Together, our study has identified that ALDH2 is a novel regulator of cholesterol synthesis, which may play an important role in CVD.
Collapse
Affiliation(s)
- Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
15
|
Gao P, Yang W, Sun L. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3120539. [PMID: 32952849 PMCID: PMC7487091 DOI: 10.1155/2020/3120539] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for interorganelle communication in eukaryotic cells and play multifunctional roles in various biological pathways. A defect in ER-mitochondria signaling or MAMs dysfunction has pleiotropic effects on a variety of intracellular events, which results in disturbances of the mitochondrial quality control system, Ca2+ dyshomeostasis, apoptosis, ER stress, and inflammasome activation, which all contribute to the onset and progression of kidney disease. Here, we review the structure and molecular compositions of MAMs as well as the experimental methods used to study these interorganellar contact sites. We will specifically summarize the downstream signaling pathways regulated by MAMs, mainly focusing on mitochondrial quality control, oxidative stress, ER-mitochondria Ca2+ crosstalk, apoptosis, inflammasome activation, and ER stress. Finally, we will discuss how alterations in MAMs integrity contribute to the pathogenesis of kidney disease and offer directions for future research.
Collapse
Affiliation(s)
- Peng Gao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
16
|
Mookherjee D, Das S, Mukherjee R, Bera M, Jana SC, Chakrabarti S, Chakrabarti O. RETREG1/FAM134B mediated autophagosomal degradation of AMFR/GP78 and OPA1 -a dual organellar turnover mechanism. Autophagy 2020; 17:1729-1752. [PMID: 32559118 DOI: 10.1080/15548627.2020.1783118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Buchmann Institute for Molecular Life Sciences, Frankfurt Am Main, Germany
| | - Manindra Bera
- Laboratory of Cell Biology, the Rockefeller University, New York, USA
| | | | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
17
|
Entwisle SW, Martinez Calejman C, Valente AS, Lawrence RT, Hung CM, Guertin DA, Villén J. Proteome and Phosphoproteome Analysis of Brown Adipocytes Reveals That RICTOR Loss Dampens Global Insulin/AKT Signaling. Mol Cell Proteomics 2020; 19:1104-1119. [PMID: 32234964 PMCID: PMC7338085 DOI: 10.1074/mcp.ra120.001946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Indexed: 11/06/2022] Open
Abstract
Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-min time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation because of chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.
Collapse
Affiliation(s)
- Samuel W Entwisle
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Anthony S Valente
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Robert T Lawrence
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | | | - Judit Villén
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington.
| |
Collapse
|
18
|
Yu F, Abdelwahid E, Xu T, Hu L, Wang M, Li Y, Mogharbel BF, de Carvalho KAT, Guarita-Souza LC, An Y, Li P. The role of mitochondrial fusion and fission in the process of cardiac oxidative stress. Histol Histopathol 2020; 35:541-552. [PMID: 31820815 DOI: 10.14670/hh-18-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the energy suppliers in the cell and undergo constant fusion and fission to meet metabolic demand during the cell life cycle. Well-balanced mitochondrial dynamics are extremely important and necessary for cell survival as well as for tissue homeostasis. Cardiomyocytes contain large numbers of mitochondria to satisfy the high energy demand. It has been established that deregulated processes of mitochondrial dynamics play a major role in myocardial cell death. Currently, cardiac mitochondrial cell death pathways attract great attention in the cell biology and regenerative medicine fields. Importantly, mitochondrial dynamics are tightly linked to oxidative stress-induced cardiac damage. This review summarizes molecular mechanisms of mitochondrial fusion and fission processes and their potential roles in myocardial cell death triggered by oxidative stress. Advances in understanding the effect of both normal and abnormal mitochondrial dynamics on heart protection will lead to significant improvement of therapeutic discoveries.
Collapse
Affiliation(s)
- Fei Yu
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA.
| | - Tao Xu
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Longgang Hu
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yuzhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Bassam Felipe Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | | | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Yi An
- Department of cardiology, Affiliated hospital of Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Fu XH, Chen CZ, Li S, Han DX, Wang YJ, Yuan B, Gao Y, Zhang JB, Jiang H. Dual-specificity phosphatase 1 regulates cell cycle progression and apoptosis in cumulus cells by affecting mitochondrial function, oxidative stress, and autophagy. Am J Physiol Cell Physiol 2019; 317:C1183-C1193. [DOI: 10.1152/ajpcell.00012.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dual-specificity phosphatase 1 ( DUSP1) is differentially expressed in cumulus cells of different physiological states, but its specific function and mechanism of action remain unclear. In this study, we explored the effects of DUSP1 expression inhibition on cell cycle progression, proliferation, apoptosis, and lactate and cholesterol levels in cumulus cells and examined reactive oxygen species levels, mitochondrial function, autophagy, and the expression of key cytokine genes. The results showed that inhibition of DUSP1 in cumulus cells caused abnormal cell cycle progression, increased cell proliferation, decreased apoptosis rates, increased cholesterol synthesis and lactic acid content, and increased cell expansion. The main reason for these effects was that inhibition of DUSP1 reduced ROS accumulation, increased glutathione level and mitochondrial membrane potential, and reduced autophagy levels in cells. These results indicate that DUSP1 limits the biological function of bovine cumulus cells under normal physiological conditions and will greatly contribute to further explorations of the physiological functions of cumulus cells and the interactions of the cumulus-oocyte complex.
Collapse
Affiliation(s)
- Xu-huang Fu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Cheng-zhen Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Sheng Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-xu Han
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi-jie Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-bao Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Wiseman SM, Kojic LD, Kassian K, Jones SJ, Joshi B, Nabi IR. Expression of Gp78/Autocrine Motility Factor Receptor and Endocytosis of Autocrine Motility Factor in Human Thyroid Cancer Cells. Cureus 2019; 11:e4928. [PMID: 31431834 PMCID: PMC6695234 DOI: 10.7759/cureus.4928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gp78/autocrine motility factor receptor (Gp78/AMFR) is a cancer-associated endoplasmic reticulum-localized E3 ubiquitin ligase and also the cell surface receptor for autocrine motility factor (AMF). The study objective was to determine the association between Gp78/AMFR and AMF endocytosis in thyroid cancer cells. Gp78/AMFR expression and AMF internalization were measured in differentiated thyroid cancer (DTC) and anaplastic thyroid cancer (ATC) cell lines and in freshly resected human papillary thyroid cancers (PTC) relative to benign thyroid tissue. Spheroid-like aggregates generated from explants of cancer, goiter, and collateral thyroid tissue were assessed for expression of cancer stem cell markers, surface Gp78/AMFR and AMF endocytosis. DTC cell lines showed elevated total and surface Gp78/AMFR and AMF internalization relative to ATC lines. Gp78/AMFR, Oct-4 and Sox-2 protein expression, Gp78/AMFR surface expression and AMF internalization were elevated in PTC-derived aggregates relative to fibroblasts. Elevated levels of Gp78/AMFR expression and AMF internalization in PTC were associated with expression of cancer stem cell markers. Gp78/AMFR expression and AMF uptake are more closely associated with DTC compared to benign thyroid lesions or ATC and with PTC-derived cancer stem-like cells.
Collapse
Affiliation(s)
- Sam M Wiseman
- Surgery, St. Paul's Hospital & University of British Columbia, Vancouver, CAN
| | - Liliana D Kojic
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, CAN
| | - Katayoon Kassian
- Bioinformatics, British Colombia / BC Cancer Agency - Vancouver Centre, Vancouver, CAN
| | - Steven J Jones
- Genome Sciences Centre, British Columbia / BC Cancer Agency - Vancouver Centre, Vancouver, CAN
| | - Bharat Joshi
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, CAN
| | - Ivan R Nabi
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, CAN
| |
Collapse
|
21
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
22
|
Ohtsuki Y, Sanoh S, Santoh M, Ejiri Y, Ohta S, Kotake Y. Inhibition of cytochrome P450 3A protein degradation and subsequent increase in enzymatic activity through p38 MAPK activation by acetaminophen and salicylate derivatives. Biochem Biophys Res Commun 2018; 509:287-293. [PMID: 30587336 DOI: 10.1016/j.bbrc.2018.12.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 (CYP) 3A4 plays an important role in drug metabolism. Although transcriptional regulation of CYP3A expression by chemicals has been comprehensively studied, its post-translational regulation is not fully understood. We previously reported that acetaminophen (APAP) caused accumulation of functional CYP3A protein via inhibition of CYP3A protein degradation through reduction of glycoprotein 78 (gp78), an E3 ligase of the ubiquitin proteasome system. Furthermore, N-acetyl-m-aminophenol, a regioisomer of APAP causes CYP3A protein accumulation, whereas p-acetamidobezoic acid, in which a hydroxy group of APAP was substituted for a carboxy group, did not lead to the same effects. However, the mechanism underlying the reduction of gp78 protein expression by APAP has not yet been elucidated. In this study, we selected 32 compounds including a phenolic hydroxyl group such as APAP and explored the compounds that increased CYP3A enzyme activity to analyze their common mechanism. Four compounds, including salicylate, increased CYP3A enzyme activity and led to the accumulation of functional CYP3A protein similarly to APAP. APAP and salicylate activate p38 mitogen-activated protein kinase (p38 MAPK). gp78 is known to be phosphorylated by p38 MAPK; so, we investigated the relationship between p38 MAPK and CYP3A. APAP activated p38 MAPK, decreased gp78 protein expression, and subsequently induced CYP3A protein expression in a time-dependent manner. When SB203580, a p38 MAPK inhibitor, was co-administered with APAP, the inhibitory effects of APAP on CYP3A protein degradation were suppressed. In this study, we demonstrated the involvement of the p38 MAPK-gp78 pathway in suppressing CYP3A protein degradation by APAP. Salicylate derivatives may also suppress the CYP3A protein degradation.
Collapse
Affiliation(s)
- Yuya Ohtsuki
- Faculty of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Seigo Sanoh
- Faculty of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Masataka Santoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoko Ejiri
- Molding Component Business Department, New Business Development Division, Kuraray Co., Ltd., 1-1-3 Otemachi, Chiyoda-ku, Tokyo, 100-8115, Japan
| | - Shigeru Ohta
- Faculty of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yaichiro Kotake
- Faculty of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
23
|
Mukherjee R, Bhattacharya A, Sau A, Basu S, Chakrabarti S, Chakrabarti O. Calmodulin regulates MGRN1-GP78 interaction mediated ubiquitin proteasomal degradation system. FASEB J 2018; 33:1927-1945. [PMID: 30230921 DOI: 10.1096/fj.201701413rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mechanism by which the endoplasmic reticulum (ER) ubiquitin ligases sense stress to potentiate their activity is poorly understood. GP78, an ER E3 ligase, is best known for its role in ER-associated protein degradation, although its activity is also linked to mitophagy, ER-mitochondria junctions, and MAPK signaling, thus highlighting the importance of understanding its regulation. In healthy cells, Mahogunin really interesting new gene (RING) finger 1 (MGRN1) interacts with GP78 and proteasomally degrades it to alleviate mitophagy. Here, we identify calmodulin (CaM) as the adapter protein that senses fluctuating cytosolic Ca2+ levels and modulates the Ca2+-dependent MGRN1-GP78 interactions. When stress elevates cytosolic Ca2+ levels in cultured and primary neuronal cells, CaM binds to both E3 ligases and inhibits their interaction. Molecular docking, simulation, and biophysical studies show that CaM interacts with both proteins with different affinities and binding modes. The physiological impact of this interaction switch manifests in the regulation of ER-associated protein degradation, ER-mitochondria junctions, and relative distribution of smooth ER and rough ER.-Mukherjee, R., Bhattacharya, A., Sau, A., Basu, S., Chakrabarti, S., Chakrabarti, O. Calmodulin regulates MGRN1-GP78 interaction mediated ubiquitin proteasomal degradation system.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Buchmann Institute for Molecular Life Sciences, Frankfurt Am Main, Germany
| | - Anshu Bhattacharya
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIB-IICB), Kolkata, India
| | - Abhishek Sau
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Samita Basu
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIB-IICB), Kolkata, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
24
|
Yu F, Xu T, Wang M, Chang W, Li P, Wang J. Function and regulation of mitofusin 2 in cardiovascular physiology and pathology. Eur J Cell Biol 2018; 97:474-482. [DOI: 10.1016/j.ejcb.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/03/2023] Open
|
25
|
Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 2018; 20:755-765. [PMID: 29950571 PMCID: PMC6716149 DOI: 10.1038/s41556-018-0133-0] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria sense and respond to many stressors and can support either cell survival or death through energy production and signaling pathways. Mitochondrial responses depend on fusion-fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and inter-organellar interactions, including with the endoplasmic reticulum, also function in cellular adaptation to stress. In this Review, we discuss how stressors influence these components, and how they contribute to the complex adaptive and pathological responses that lead to disease.
Collapse
Affiliation(s)
- Verónica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Picard
- Division of Behavioral Medicine, Departments of Psychiatry and Neurology, The Merritt Center, Columbia Translational Neuroscience Initiative, Columbia Aging Center, Columbia University Medical Center, New York, NY, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak. Cell Rep 2018; 21:1667-1680. [PMID: 29117569 DOI: 10.1016/j.celrep.2017.10.060] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/15/2017] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+], mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is required for the motility inhibition. Furthermore, anchoring mitochondria directly to kinesins without involvement of the physiological adaptors between the organelles and the motor protein prevents the H2O2-induced decrease in mitochondrial motility. Thus, ROS engage p38α and the motor adaptor complex to exert changes in mitochondrial motility, which likely has both physiological and pathophysiological relevance.
Collapse
|
27
|
Mitofusin 2: from functions to disease. Cell Death Dis 2018; 9:330. [PMID: 29491355 PMCID: PMC5832425 DOI: 10.1038/s41419-017-0023-6] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Mitochondria are highly dynamic organelles whose functions are essential for cell viability. Within the cell, the mitochondrial network is continuously remodeled through the balance between fusion and fission events. Moreover, it dynamically contacts other organelles, particularly the endoplasmic reticulum, with which it enterprises an important functional relationship able to modulate several cellular pathways. Being mitochondria key bioenergetics organelles, they have to be transported to all the specific high-energy demanding sites within the cell and, when damaged, they have to be efficiently removed. Among other proteins, Mitofusin 2 represents a key player in all these mitochondrial activities (fusion, trafficking, turnover, contacts with other organelles), the balance of which results in the appropriate mitochondrial shape, function, and distribution within the cell. Here we review the structural and functional properties of Mitofusin 2, highlighting its crucial role in several cell pathways, as well as in the pathogenesis of neurodegenerative diseases, metabolic disorders, cardiomyopathies, and cancer.
Collapse
|
28
|
Filadi R, Greotti E, Pizzo P. Highlighting the endoplasmic reticulum-mitochondria connection: Focus on Mitofusin 2. Pharmacol Res 2018; 128:42-51. [PMID: 29309902 DOI: 10.1016/j.phrs.2018.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
Abstract
The endoplasmic reticulum (ER) and the mitochondrial network are two highly interconnected cellular structures. By proteinaceous tethers, specialized membrane domains of the ER are tightly associated with the outer membrane of mitochondria, allowing the assembly of signaling platforms where different cell functions take place or are modulated, such as lipid biosynthesis, Ca2+ homeostasis, inflammation, autophagy and apoptosis. The ER-mitochondria coupling is highly dynamic and contacts between the two organelles can be modified in their number, extension and thickness by different stimuli. Importantly, several pathological conditions, such as cancer, neurodegenerative diseases and metabolic syndromes show alterations in this feature, underlining the key role of ER-mitochondria crosstalk in cell physiology. In this contribution, we will focus on one of the major modulator of ER-mitochondria apposition, Mitofusin 2, discussing the structure of the protein and its debated role on organelles tethering. Moreover, we will critically describe different techniques commonly used to investigate this crucial issue, highlighting their advantages, drawbacks and limits.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy.
| |
Collapse
|
29
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 2017; 14:576-587. [PMID: 29149759 PMCID: PMC5691221 DOI: 10.1016/j.redox.2017.11.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury. However, the precise upstream molecular mechanism of fission/mitophagy remains unclear. Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown. Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury. In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function. In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff). A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis. Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy. Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder. However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress. The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.
Collapse
Affiliation(s)
- Qinhua Jin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Ting Xin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|
30
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
31
|
Joshi V, Upadhyay A, Kumar A, Mishra A. Gp78 E3 Ubiquitin Ligase: Essential Functions and Contributions in Proteostasis. Front Cell Neurosci 2017; 11:259. [PMID: 28890687 PMCID: PMC5575403 DOI: 10.3389/fncel.2017.00259] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
As per the requirement of metabolism and fitness, normal cellular functions are controlled by several proteins, and their interactive molecular and signaling events at multiple levels. Protein quality control (PQC) mechanisms ensure the correct folding and proper utilization of these proteins to avoid their misfolding and aggregation. To maintain the optimum environment of complex proteome PQC system employs various E3 ubiquitin ligases for the selective degradation of aberrant proteins. Glycoprotein 78 (Gp78) is an E3 ubiquitin ligase that prevents multifactorial deleterious accumulation of different misfolded proteins via endoplasmic reticulum-associated degradation (ERAD). However, the precise role of Gp78 under stress conditions to avoid bulk misfolded aggregation is unclear, which can act as a crucial resource to establish the dynamic nature of the proteome. Present article systematically explains the detailed molecular characterization of Gp78 and also addresses its various cellular physiological functions, which could be crucial to achieving protein homeostasis. Here, we comprehensively represent the current findings of Gp78, which shows its PQC roles in different physiological functions and diseases; and thereby propose novel opportunities to better understand the unsolved questions for therapeutic interventions linked with different protein misfolding disorders.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology IndoreIndore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
32
|
Silva-Vignato B, Coutinho LL, Cesar ASM, Poleti MD, Regitano LCA, Balieiro JCC. Comparative muscle transcriptome associated with carcass traits of Nellore cattle. BMC Genomics 2017; 18:506. [PMID: 28673252 PMCID: PMC5496360 DOI: 10.1186/s12864-017-3897-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background Commercial cuts yield is an important trait for beef production, which affects the final value of the products, but its direct determination is a challenging procedure to be implemented in practice. The measurement of ribeye area (REA) and backfat thickness (BFT) can be used as indirect measures of meat yield. REA and BFT are important traits studied in beef cattle due to their strong implication in technological (carcass yield) and nutritional characteristics of meat products, like the degree of muscularity and total body fat. Thus, the aim of this work was to study the Longissimus dorsi muscle transcriptome of Nellore cattle, associated with REA and BFT, to find differentially expressed (DE) genes, metabolic pathways, and biological processes that may regulate these traits. Results By comparing the gene expression level between groups with extreme genomic estimated breeding values (GEBV), 101 DE genes for REA and 18 for BFT (false discovery rate, FDR 10%) were identified. Functional enrichment analysis for REA identified two KEGG pathways, MAPK (Mitogen-Activated Protein Kinase) signaling pathway and endocytosis pathway, and three biological processes, response to endoplasmic reticulum stress, cellular protein modification process, and macromolecule modification. The MAPK pathway is responsible for fundamental cellular processes, such as growth, differentiation, and hypertrophy. For BFT, 18 biological processes were found to be altered and grouped into 8 clusters of semantically similar terms. The DE genes identified in the biological processes for BFT were ACHE, SRD5A1, RSAD2 and RSPO3. RSAD2 has been previously shown to be associated with lipid droplet content and lipid biosynthesis. Conclusion In this study, we identified genes, metabolic pathways, and biological processes, involved in differentiation, proliferation, protein turnover, hypertrophy, as well as adipogenesis and lipid biosynthesis related to REA and BFT. These results enlighten some of the molecular processes involved in muscle and fat deposition, which are economically important carcass traits for beef production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3897-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bárbara Silva-Vignato
- College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| | - Luiz L Coutinho
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Aline S M Cesar
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Mirele D Poleti
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
33
|
Herrera-Cruz MS, Simmen T. Cancer: Untethering Mitochondria from the Endoplasmic Reticulum? Front Oncol 2017; 7:105. [PMID: 28603693 PMCID: PMC5445141 DOI: 10.3389/fonc.2017.00105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/18/2023] Open
Abstract
Following the discovery of the mitochondria-associated membrane (MAM) as a hub for lipid metabolism in 1990 and its description as one of the first examples for membrane contact sites at the turn of the century, the past decade has seen the emergence of this structure as a potential regulator of cancer growth and metabolism. The mechanistic basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP production, known to be low in many tumors as part of the Warburg effect. However, low mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, another cancer hallmark. Numerous regulators of this flux have been recently identified as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and oncogenes. Given the important role that the MAM could play in cancer, it is expected that proteins mediating its formation are particularly implicated in tumorigenesis. Examples for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that likely act as tumor suppressors. This review discusses how these proteins that mediate or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigenesis. The emerging picture of MAMs in cancer seems to indicate that in addition to the downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer cells control mitochondria metabolism and apoptosis.
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, Hausenloy DJ. Mitochondrial-Shaping Proteins in Cardiac Health and Disease - the Long and the Short of It! Cardiovasc Drugs Ther 2017; 31:87-107. [PMID: 28190190 PMCID: PMC5346600 DOI: 10.1007/s10557-016-6710-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek John Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK. .,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
35
|
Herrera-Cruz MS, Simmen T. Of yeast, mice and men: MAMs come in two flavors. Biol Direct 2017; 12:3. [PMID: 28122638 PMCID: PMC5267431 DOI: 10.1186/s13062-017-0174-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae. This has led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes. Reviewers: This article was reviewed by Paola Pizzo (nominated by Luca Pellegrini), Maya Schuldiner and György Szabadkai (nominated by Luca Pellegrini).
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| |
Collapse
|
36
|
Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 2017; 62:1-15. [PMID: 28108029 DOI: 10.1016/j.ceca.2017.01.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padova, Italy.
| |
Collapse
|
37
|
Over Six Decades of Discovery and Characterization of the Architecture at Mitochondria-Associated Membranes (MAMs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:13-31. [PMID: 28815519 DOI: 10.1007/978-981-10-4567-7_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of proteins regulating ER-mitochondria tethering including phosphofurin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2 has pushed contact sites between the endoplasmic reticulum (ER) and mitochondria into the spotlight of cell biology. While the field is developing rapidly and controversies have come and gone multiple times during its history, it is sometimes overlooked that significant research has been done decades ago with the original discovery of these structures in the 1950s and the first characterization of their function (and coining of the term mitochondria-associated membrane, MAM) in 1990. Today, an ever-increasing array of proteins localize to the MAM fraction of the endoplasmic reticulum (ER) to regulate the interaction of this organelle with mitochondria. These mitochondria-ER contacts, sometimes referred to as MERCs, regulate a multitude of biological functions, including lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy, mitochondrial structure, and apoptosis.
Collapse
|
38
|
Mitofusin-2 is required for mouse oocyte meiotic maturation. Sci Rep 2016; 6:30970. [PMID: 27485634 PMCID: PMC4971528 DOI: 10.1038/srep30970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/12/2016] [Indexed: 01/25/2023] Open
Abstract
Mitofusin-2 (Mfn2) is essential for embryonic development, anti-apoptotic events, protection against free radical-induced lesions, and mitochondrial fusion in many cells. However, little is known about its mechanism and function during oocyte maturation. In this study, we found that Mfn2 was expressed in the cytoplasm during different stages of mouse oocyte maturation. Mfn2 was mainly associated with α-tubulin during oocyte maturation. Knockdown of Mfn2 by specific siRNA injection into oocytes caused the mitochondrial morphology and quantity to change, resulting in severely defective spindles and misaligned chromosomes. This led to metaphase I arrest and the failure of first polar body extrusion. Furthermore, Mfn2 depletion from GV stage oocytes caused the redistribution of p38 MAPK in oocyte cytoplasm. These findings provide insights into potential mechanisms of Mfn2-mediated cellular alterations, which may have significant implications for oocyte maturation.
Collapse
|
39
|
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell Rep 2016; 15:2226-2238. [PMID: 27239030 DOI: 10.1016/j.celrep.2016.05.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 01/31/2023] Open
Abstract
Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy; Department of Biomedical Sciences, Institute of Neuroscience, Italian National Research Council (CNR), via U. Bassi 58/B, Padua 35131, Italy
| | - Gabriele Turacchio
- Department of Biomedical Sciences, Institute of Protein Biochemistry, Italian National Research Council (CNR), via P. Castellino 111, Naples 80131, Italy
| | - Alberto Luini
- Department of Biomedical Sciences, Institute of Protein Biochemistry, Italian National Research Council (CNR), via P. Castellino 111, Naples 80131, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padua 35131, Italy; Department of Biomedical Sciences, Institute of Neuroscience, Italian National Research Council (CNR), via U. Bassi 58/B, Padua 35131, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy.
| |
Collapse
|
40
|
Mukherjee R, Chakrabarti O. Ubiquitin mediated regulation of the E3 ligase GP78 by Mahogunin in trans affects mitochondrial homeostasis. J Cell Sci 2016; 129:757-73. [DOI: 10.1242/jcs.176537] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Cellular quality control provides an efficient surveillance system to regulate mitochondrial turn-over. This study elucidates a novel interaction of the cytosolic E3 ligase, MGRN1 with the ER ubiquitin E3 ligase, GP78. Loss of Mgrn1 function has been implicated in late-onset spongiform neurodegeneration, congenital heart defects amongst several developmental defects. MGRN1 ubiquitinates GP78 in trans via non-canonical K11 linkages. This helps maintain constitutively low levels of GP78 in healthy cells, in turn downregulating mitophagy. GP78, however, does not regulate MGRN1. When mitochondria are stressed, cytosolic Ca2+ increases.This leads to reduced interaction between MGRN1 and GP78 and its compromised ubiquitination. Chelating Ca2+ restores association between the two ligases and the trans ubiquitination. Catalytic inactivation of MGRN1 results in elevated levels of GP78 and consequential increase in the initiation of mitophagy. This is significant because functional depletion of MGRN1 by membrane-associated disease causing prion protein, CtmPrP affects polyubiquitination and degradation of GP78, also leading to an increase in mitophagy events. This suggests that MGRN1 participates in mitochondrial quality control and could contribute to neurodegeneration in a sub-set of CtmPrP mediated prion diseases.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata – 700064, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata – 700064, India
| |
Collapse
|