1
|
Jing F, Jing C, Dai X, Zhou G, Di S, Bi X, Dai T, Qin T, Hong L. Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth and survival via different mechanisms. Am J Transl Res 2021; 13:4412-4421. [PMID: 34150023 PMCID: PMC8205710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Sphingomyelin synthase 1 (SMS1) and 2 (SMS2) are two enzymes required for sphingomyelin de novo synthesis, and their roles in tumor transformation and development have been recently recognized. In this work, we systematically evaluated the expression patterns of SMS1 and 2 in ovarian cancer patient samples and cell lines. Furthermore, we analyzed the functions of SMS2 and its underlying mechanisms. We observed a specific increase in SMS2 expression in ovarian cancer tissues compared to the adjacent normal ovary tissues in majority of patients' samples. This is regardless of their clinico-pathological characteristics. SMS1 expression was similar between ovarian cancer and its normal counterpart in 30 patients tested. The upregulation of SMS2 but not SMS1 was also reproducible in a panel of ovarian cancer cell lines. Functional analysis indicated that SMS2 plays a predominant role in promoting migration rather than proliferation in ovarian cancer. SMS2 depletion suppressed migration, growth and survival, and furthermore this was dependent on SMS2 baseline level in ovarian cancer cells. SMS2 inhibition significantly augmented cisplatin's efficacy. We further found that migration inhibition induced by SMS2 depletion was largely due to the suppression of RhoA/ROCK/LIMK/cofilin and RhoA/ROCK/FAK/paxillin pathways. In addition, lipid metabolism disruption, oxidative stress and damage, and impaired mitochondrial function contributed to the inhibitory effects of SMS2 depletion in ovarian cancer growth and survival. Our work demonstrates that SMS2 but not SMS1 is upregulated in ovarian cancer and involved in migration, growth and survival via different mechanisms. Our findings highlight the therapeutic value of SMS2 inhibition in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Fang Jing
- Department of Gynaecology, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Chao Jing
- Department of Stomatology, Cangbu Central Hospital of Xinzhou DistrictWuhan, China
| | - Xiaoyan Dai
- Department of Gynaecology, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Guang Zhou
- Department of Gynaecology, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Shi Di
- Department of Gynaecology, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Xiaoxia Bi
- Department of Gynaecology, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Tingting Dai
- Department of Obstetrics, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Tingting Qin
- Department of Integrated Chinese and Western Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital)Wuhan, China
| | - Li Hong
- Department of Gynaecology, Renmin Hospital of Wuhan UniversityWuhan, China
| |
Collapse
|
2
|
Nilsson Å, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316:G425-G445. [PMID: 30576217 DOI: 10.1152/ajpgi.00320.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The digestion of choline phospholipids is important for choline homeostasis, lipid signaling, postprandial lipid and energy metabolism, and interaction with intestinal bacteria. The digestion is mediated by the combined action of pancreatic and mucosal enzymes. In the proximal small intestine, hydrolysis of phosphatidylcholine (PC) to 1-lyso-PC and free fatty acid (FFA) by the pancreatic phospholipase A2 IB coincides with the digestion of the dietary triacylglycerols by lipases, but part of the PC digestion is extended and must be mediated by other enzymes as the jejunoileal brush-border phospholipase B/lipase and mucosal secreted phospholipase A2 X. Absorbed 1-lyso-PC is partitioned in the mucosal cells between degradation and reacylation into chyle PC. Reutilization of choline for hepatic bile PC synthesis, and the reacylation of 1-lyso-PC into chylomicron PC by the lyso-PC-acyl-CoA-acyltransferase 3 are important features of choline recycling and postprandial lipid metabolism. The role of mucosal enzymes is emphasized by sphingomyelin (SM) being sequentially hydrolyzed by brush-border alkaline sphingomyelinase (alk-SMase) and neutral ceramidase to sphingosine and FFA, which are well absorbed. Ceramide and sphingosine-1-phosphate are generated and are both metabolic intermediates and important lipid messengers. Alk-SMase has anti-inflammatory effects that counteract gut inflammation and tumorigenesis. These may be mediated by multiple mechanisms including generation of sphingolipid metabolites and suppression of autotaxin induction and lyso-phosphatidic acid formation. Here we summarize current knowledge on the roles of pancreatic and mucosal enzymes in PC and SM digestion, and its implications in intestinal and liver diseases, bacterial choline metabolism in the gut, and cholesterol absorption.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clow-linical Sciences Lund, Division of Medicine, Gastroenterology, Lund University , Lund , Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
3
|
Collenburg L, Beyersdorf N, Wiese T, Arenz C, Saied EM, Becker-Flegler KA, Schneider-Schaulies S, Avota E. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration. Front Immunol 2017; 8:1007. [PMID: 28871263 PMCID: PMC5566967 DOI: 10.3389/fimmu.2017.01007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023] Open
Abstract
Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM) has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.
Collapse
Affiliation(s)
- Lena Collenburg
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Christoph Arenz
- Institute for Organic and Bioorganic Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Essa M Saied
- Institute for Organic and Bioorganic Chemistry, Humboldt University of Berlin, Berlin, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Singh RK, Haka AS, Brumfield A, Grosheva I, Bhardwaj P, Chin HF, Xiong Y, Hla T, Maxfield FR. Ceramide activation of RhoA/Rho kinase impairs actin polymerization during aggregated LDL catabolism. J Lipid Res 2017; 58:1977-1987. [PMID: 28814641 PMCID: PMC5625121 DOI: 10.1194/jlr.m076398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophages use an extracellular, hydrolytic compartment formed by local actin polymerization to digest aggregated LDL (agLDL). Catabolism of agLDL promotes foam cell formation and creates an environment rich in LDL catabolites, including cholesterol and ceramide. Increased ceramide levels are present in lesional LDL, but the effect of ceramide on macrophage proatherogenic processes remains unknown. Here, we show that macrophages accumulate ceramide in atherosclerotic lesions. Using macrophages from sphingosine kinase 2 KO (SK2KO) mice to mimic ceramide-rich conditions of atherosclerotic lesions, we show that SK2KO macrophages display impaired actin polymerization and foam cell formation in response to contact with agLDL. C16-ceramide treatment impaired wild-type but not SK2KO macrophage actin polymerization, confirming that this effect is due to increased ceramide levels. We demonstrate that knockdown of RhoA or inhibition of Rho kinase restores agLDL-induced actin polymerization in SK2KO macrophages. Activation of RhoA in macrophages was sufficient to impair actin polymerization and foam cell formation in response to agLDL. Finally, we establish that during catabolism, macrophages take up ceramide from agLDL, and inhibition of ceramide generation modulates actin polymerization. These findings highlight a critical regulatory pathway by which ceramide impairs actin polymerization through increased RhoA/Rho kinase signaling and regulates foam cell formation.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Abigail S Haka
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | | | - Inna Grosheva
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Priya Bhardwaj
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Harvey F Chin
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
5
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|