1
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms cortical foci dependent on its intrinsically disordered region and interactions with tubulins. Cell Rep 2024; 43:114776. [PMID: 39305484 PMCID: PMC11972086 DOI: 10.1016/j.celrep.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The EFA6 protein family, originally identified as Sec7 guanine nucleotide exchange factors, has also been found to regulate cortical microtubule (MT) dynamics. Here, we find that in the mature C. elegans epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). The EFA-6 IDR can form biomolecular condensates in vitro. In genetic screens for mutants with altered GFP::EFA-6 localization, we identified a gain-of-function (gf) mutation in α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. Lethality of tba-1(gf) is partially suppressed by loss of function in efa-6. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MT elimination domain (MTED). Our results reveal functionally important crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms spatially restricted cortical foci dependent on its intrinsically disordered region and interactions with tubulins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.588158. [PMID: 38645057 PMCID: PMC11030407 DOI: 10.1101/2024.04.14.588158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Microtubules (MTs) are dynamic components of the cytoskeleton and play essential roles in morphogenesis and maintenance of tissue and cell integrity. Despite recent advances in understanding MT ultrastructure, organization, and growth control, how cells regulate MT organization at the cell cortex remains poorly understood. The EFA-6/EFA6 proteins are recently identified membrane-associated proteins that inhibit cortical MT dynamics. Here, combining visualization of endogenously tagged C. elegans EFA-6 with genetic screening, we uncovered tubulin-dependent regulation of EFA-6 patterning. In the mature epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). We further show the EFA-6 IDR is sufficient to form biomolecular condensates in vitro. In screens for mutants with altered GFP::EFA-6 localization, we identified a novel gain-of-function (gf) mutation in an α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. tba-1(gf) animals exhibit temperature-sensitive embryonic lethality, which is partially suppressed by efa-6(lf), indicating the interaction between tubulins and EFA-6 is important for normal development. TBA-1(gf) shows reduced incorporation into filamentous MTs but has otherwise mild effects on cellular MT organization. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci formation requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. The tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MTED. Our results reveal a novel crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N. Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Andrew D. Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| |
Collapse
|
3
|
Taheri A, Wang Z, Singal B, Guo F, Al-Bassam J. Cryo-EM structures of the tubulin cofactors reveal the molecular basis for the biogenesis of alpha/beta-tubulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577855. [PMID: 38405852 PMCID: PMC10889022 DOI: 10.1101/2024.01.29.577855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microtubule polarity and dynamic polymerization originate from the self-association properties of the a-tubulin heterodimer. For decades, it has remained poorly understood how the tubulin cofactors, TBCD, TBCE, TBCC, and the Arl2 GTPase mediate a-tubulin biogenesis from α- and β-tubulins. Here, we use cryogenic electron microscopy to determine structures of tubulin cofactors bound to αβ-tubulin. These structures show that TBCD, TBCE, and Arl2 form a heterotrimeric cage-like TBC-DEG assembly around the a-tubulin heterodimer. TBCD wraps around Arl2 and almost entirely encircles -tubulin, while TBCE forms a lever arm that anchors along the other end of TBCD and rotates α-tubulin. Structures of the TBC-DEG-αβ-tubulin assemblies bound to TBCC reveal the clockwise rotation of the TBCE lever that twists a-tubulin by pulling its C-terminal tail while TBCD holds -tubulin in place. Altogether, these structures uncover transition states in αβ-tubulin biogenesis, suggesting a vise-like mechanism for the GTP-hydrolysis dependent a-tubulin biogenesis mediated by TBC-DEG and TBCC. These structures provide the first evidence of the critical functions of the tubulin cofactors as enzymes that regulate the invariant organization of αβ-tubulin, by catalyzing α- and β-tubulin assembly, disassembly, and subunit exchange which are crucial for regulating the polymerization capacities of αβ-tubulins into microtubules.
Collapse
|
4
|
Schigt H, Bald M, van der Eerden BCJ, Gal L, Ilenwabor BP, Konrad M, Levine MA, Li D, Mache CJ, Mackin S, Perry C, Rios FJ, Schlingmann KP, Storey B, Trapp CM, Verkerk AJMH, Zillikens MC, Touyz RM, Hoorn EJ, Hoenderop JGJ, de Baaij JHF. Expanding the Phenotypic Spectrum of Kenny-Caffey Syndrome. J Clin Endocrinol Metab 2023; 108:e754-e768. [PMID: 36916904 PMCID: PMC10438882 DOI: 10.1210/clinem/dgad147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.
Collapse
Affiliation(s)
- Heidi Schigt
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Bald
- Department of Pediatric Nephrology, Olga Hospital, Clinics of Stuttgart, 70174 Stuttgart, Germany
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lars Gal
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Barnabas P Ilenwabor
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Konrad
- Pediatric Nephrology, Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes and Center for Bone Health, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dong Li
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christoph J Mache
- Pediatric Nephrology, Department of Pediatrics, Medical University Graz, 8036 Graz, Austria
| | - Sharon Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Endocrinology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Colin Perry
- Department of Endocrinology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H3H 2R9, Canada
| | - Karl Peter Schlingmann
- Pediatric Nephrology, Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Ben Storey
- Oxford Kidney Unit, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Christine M Trapp
- Trapp-Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Division of Endocrinology, Connecticut Children's Medical Center, Hartford, CT 06106, USA
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H3H 2R9, Canada
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
6
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
7
|
Zheng Y, Huo J, Yang M, Zhang G, Wan S, Chen X, Zhang B, Liu H. ERK1/2 Signalling Pathway Regulates Tubulin-Binding Cofactor B Expression and Affects Astrocyte Process Formation after Acute Foetal Alcohol Exposure. Brain Sci 2022; 12:brainsci12070813. [PMID: 35884621 PMCID: PMC9312805 DOI: 10.3390/brainsci12070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Foetal alcohol spectrum disorders (FASDs) are a spectrum of neurological disorders whose neurological symptoms, besides the neuronal damage caused by alcohol, may also be associated with neuroglial damage. Tubulin-binding cofactor B (TBCB) may be involved in the pathogenesis of FASD. To understand the mechanism and provide new insights into the pathogenesis of FASD, acute foetal alcohol exposure model on astrocytes was established and the interference experiments were carried out. First, after alcohol exposure, the nascent astrocyte processes were reduced or lost, accompanied by the absence of TBCB expression and the disruption of microtubules (MTs) in processes. Subsequently, TBCB was silenced with siRNA. It was severely reduced or lost in nascent astrocyte processes, with a dramatic reduction in astrocyte processes, indicating that TBCB plays a vital role in astrocyte process formation. Finally, the regulating mechanism was studied and it was found that the extracellular signal-regulated protease 1/2 (ERK1/2) signalling pathway was one of the main pathways regulating TBCB expression in astrocytes after alcohol injury. In summary, after acute foetal alcohol exposure, the decreased TBCB in nascent astrocyte processes, regulated by the ERK1/2 signalling pathway, was the main factor leading to the disorder of astrocyte process formation, which could contribute to the neurological symptoms of FASD.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiechao Huo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400063, China;
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital & Institute, Chengdu 610044, China;
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| |
Collapse
|
8
|
Saunders HAJ, Johnson-Schlitz DM, Jenkins BV, Volkert PJ, Yang SZ, Wildonger J. Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Curr Biol 2022; 32:614-630.e5. [PMID: 35081332 PMCID: PMC8843987 DOI: 10.1016/j.cub.2021.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 02/09/2023]
Abstract
Microtubules are essential to neuron shape and function. Acetylation of tubulin has the potential to directly tune the behavior and function of microtubules in cells. Although proteomic studies have identified several acetylation sites in α-tubulin, the effects of acetylation at these sites remains largely unknown. This includes the highly conserved residue lysine 394 (K394), which is located at the αβ-tubulin dimer interface. Using a fly model, we show that α-tubulin K394 is acetylated in the nervous system and is an essential residue. We found that an acetylation-blocking mutation in endogenous α-tubulin, K394R, perturbs the synaptic morphogenesis of motoneurons and reduces microtubule stability. Intriguingly, the K394R mutation has opposite effects on the growth of two functionally and morphologically distinct motoneurons, revealing neuron-type-specific responses when microtubule stability is altered. Eliminating the deacetylase HDAC6 increases K394 acetylation, and the over-expression of HDAC6 reduces microtubule stability similar to the K394R mutant. Thus, our findings implicate α-tubulin K394 and its acetylation in the regulation of microtubule stability and suggest that HDAC6 regulates K394 acetylation during synaptic morphogenesis.
Collapse
Affiliation(s)
- Harriet A. J. Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Dena M. Johnson-Schlitz
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Brian V. Jenkins
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Peter J. Volkert
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Biochemistry Scholars Program, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Sihui Z. Yang
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Cellular & Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Current address: Pediatrics Department and Biological Sciences Division, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Lead and author for correspondence:
| |
Collapse
|
9
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
10
|
Twelvetrees AE. The lifecycle of the neuronal microtubule transport machinery. Semin Cell Dev Biol 2020; 107:74-81. [DOI: 10.1016/j.semcdb.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
|
11
|
Li W, Feng Y, Chen A, Li T, Huang S, Liu J, Liu X, Liu Y, Gao J, Yan D, Sun J, Mei L, Liu X, Ling J. Elmod3 knockout leads to progressive hearing loss and abnormalities in cochlear hair cell stereocilia. Hum Mol Genet 2019; 28:4103-4112. [PMID: 31628468 PMCID: PMC7305813 DOI: 10.1093/hmg/ddz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
ELMOD3, an ARL2 GTPase-activating protein, is implicated in causing hearing impairment in humans. However, the specific role of ELMOD3 in auditory function is still far from being elucidated. In the present study, we used the CRISPR/Cas9 technology to establish an Elmod3 knockout mice line in the C57BL/6 background (hereinafter referred to as Elmod3-/- mice) and investigated the role of Elmod3 in the cochlea and auditory function. Elmod3-/- mice started to exhibit hearing loss from 2 months of age, and the deafness progressed with aging, while the vestibular function of Elmod3-/- mice was normal. We also observed that Elmod3-/- mice showed thinning and receding hair cells in the organ of Corti and much lower expression of F-actin cytoskeleton in the cochlea compared with wild-type mice. The deafness associated with the mutation may be caused by cochlear hair cells dysfunction, which manifests with shortening and fusion of inner hair cells stereocilia and progressive degeneration of outer hair cells stereocilia. Our finding associates Elmod3 deficiencies with stereocilia dysmorphologies and reveals that they might play roles in the actin cytoskeleton dynamics in cochlear hair cells, and thus relate to hearing impairment.
Collapse
Affiliation(s)
- Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Taoxi Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Sida Huang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong, China
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jie Sun
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xuezhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jie Ling
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University and Hunan Key Laboratory of Molecular Precision Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
13
|
TAPping into the treasures of tubulin using novel protein production methods. Essays Biochem 2018; 62:781-792. [PMID: 30429282 PMCID: PMC6281476 DOI: 10.1042/ebc20180033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023]
Abstract
Microtubules are cytoskeletal elements with important cellular functions, whose dynamic behaviour and properties are in part regulated by microtubule-associated proteins (MAPs). The building block of microtubules is tubulin, a heterodimer of α- and β-tubulin subunits. Longitudinal interactions between tubulin dimers facilitate a head-to-tail arrangement of dimers into protofilaments, while lateral interactions allow the formation of a hollow microtubule tube that mostly contains 13 protofilaments. Highly homologous α- and β-tubulin isotypes exist, which are encoded by multi-gene families. In vitro studies on microtubules and MAPs have largely relied on brain-derived tubulin preparations. However, these consist of an unknown mix of tubulin isotypes with undefined post-translational modifications. This has blocked studies on the functions of tubulin isotypes and the effects of tubulin mutations found in human neurological disorders. Fortunately, various methodologies to produce recombinant mammalian tubulins have become available in the last years, allowing researchers to overcome this barrier. In addition, affinity-based purification of tagged tubulins and identification of tubulin-associated proteins (TAPs) by mass spectrometry has revealed the 'tubulome' of mammalian cells. Future experiments with recombinant tubulins should allow a detailed description of how tubulin isotype influences basic microtubule behaviour, and how MAPs and TAPs impinge on tubulin isotypes and microtubule-based processes in different cell types.
Collapse
|