1
|
Münzel T, Kuntic M, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. The links between soil and water pollution and cardiovascular disease. Atherosclerosis 2025; 403:119160. [PMID: 40074641 DOI: 10.1016/j.atherosclerosis.2025.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.2 billion people, while over 2 billion live in water-stressed regions. Pollution of soil, air, and water is a leading environmental cause of disease, contributing to over 9 million premature deaths annually. Soil contamination stems from heavy metals, synthetic chemicals, pesticides, and plastics, driven by industrial activity, agriculture, and waste mismanagement. These pollutants induce oxidative stress, inflammation, and hormonal disruption, significantly increasing risks for non-communicable diseases (NCDs) such as cardiovascular disease (CVD). Emerging contaminants like micro- and nanoplastics amplify health risks through cellular damage, oxidative stress, and cardiovascular dysfunction. Urbanization and climate change exacerbate soil degradation through deforestation, overfertilization, and pollution, further threatening ecosystem sustainability and human health. Mitigation efforts, such as reducing chemical exposure, adopting sustainable land-use practices, and advancing urban planning, have shown promise in lowering pollution-related health impacts. Public health initiatives, stricter pollution controls, and lifestyle interventions, including antioxidant-rich diets, can also mitigate risks. Pollution remains preventable, as demonstrated by high-income nations implementing cost-effective solutions. Policies like the European Commission's Zero-Pollution Vision aim to reduce pollution to safe levels by 2050, promoting sustainable ecosystems and public health. Addressing soil pollution is critical to combating the global burden of NCDs, particularly CVDs, and fostering a healthier environment for future generations.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.
| | - Marin Kuntic
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Molecular Pharmacology, Albert Einstein College of Medicine, United States
| | - Mark J Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, USA; Centre Scientifique de Monaco, MC, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany
| |
Collapse
|
2
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2025; 22:71-89. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Roy B, Murugesan K, Mathanmohun M, Sathian B. Impact of nanoparticles on human health and disease. Nepal J Epidemiol 2023; 13:1294-1297. [PMID: 38299042 PMCID: PMC10823378 DOI: 10.3126/nje.v13i4.61245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Nanoparticles (NPs) are small particles with a surface area ranging from 1 to 100 nm in diameter that are rampantly used in different fields, e.g., medicine, engineering, and others. Because of their unique properties, such as their tiny size, magnetic properties, quantum size effects, and macroscopic quantum tunnelling effects, they are crucial for a wide range of potential applications. NPs play a significant role in the treatment of vascular disorders, the production of vaccines, and the development of drug carriers for diverse therapies due to their bioavailability, targeting ability, and efficacy. However, significant risks to the environment and health are also associated with it. NPs cause necrotic plasma membrane rupture or apoptosis, which leads to cell death. NPs interfere with cell signalling, endosomal membranes, and organelles like the nucleus or mitochondria, affecting their function. NPs cause autophagic cell death, which causes a stress response and sterile inflammation. The primary routes for the entry of NPs into the human body are inhalation, ingestion, and skin contact. NPs accumulate in the respiratory system based on their size, shape, and surface properties. NPs can cause lung inflammation and fibrosis, disrupt the endocrine system by attaching to hormone receptors, and produce reactive oxygen species (ROS) associated with DNA damage, oligospermia, and male infertility. Carcinogenic properties of NPs cause mutations, apoptosis, and inflammatory responses. Collaborative research between ecologists and epidemiologists may enlighten ways to reduce the harmful effects of NPs.
Collapse
Affiliation(s)
- Bedanta Roy
- Associate Professor, Department of Physiology, Faculty of Medicine, Quest International University, No. 227, Plaza Teh Teng Seng (Level 2), Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Karthikeyan Murugesan
- Associate Professor, Department of Microbiology, Faculty of Medicine, Quest International University, No. 227, Plaza Teh Teng Seng (Level 2), Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Maghimaa Mathanmohun
- Assistant Professor, Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram 637408, Tamil Nadu, India
| | - Brijesh Sathian
- Geriatrics and long term care department, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
4
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Lázaro-Diéguez F, Müsch A. Live-cell Imaging of Biosynthetic Protein Transport in Hepatocytes. Methods Mol Biol 2022; 2544:145-157. [PMID: 36125716 PMCID: PMC9627190 DOI: 10.1007/978-1-0716-2557-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we describe a strategy to analyze the exit of apical and basolateral cargo from the trans-Golgi network in primary hepatocytes. The method is based on recombinant adenovirus-mediated infection combined with a pulse-chase regimen and live-cell imaging analysis of fluorescent protein-tagged dipeptidyl peptidase IV (DPPIV) and vesicular stomatitis virus G (VSVG) cargo proteins, coexpressed and accumulated in the endoplasmic reticulum via DPPIV aggregation through an engineered conditional aggregation domain and VSVG by exploiting the aggregation of the ts045 mutant at its non-permissive temperature of 40 °C.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Lázaro-Diéguez F, Müsch A. Low Rho activity in hepatocytes prevents apical from basolateral cargo separation during trans-Golgi network to surface transport. Traffic 2020; 21:364-374. [PMID: 32124512 PMCID: PMC7959587 DOI: 10.1111/tra.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocytes, the main epithelial cells of the liver, organize their polarized membrane domains differently from ductal epithelia. They also differ in their biosynthetic delivery of single-membrane-spanning and glycophosphatidylinositol-anchored proteins to the apical domain. While ductal epithelia target apical proteins to varying degrees from the trans-Golgi network (TGN) to the apical surface directly, hepatocytes target them first to the basolateral domain, from where they undergo basolateral-to-apical transcytosis. How TGN-to-surface transport differs in both scenarios is unknown. Here, we report that the basolateral detour of a hepatocyte apical protein is due, in part, to low RhoA activity at the TGN, which prevents its segregation from basolateral transport carriers. Activating Rho in hepatocytic cells, which switches their polarity from hepatocytic to ductal, also led to apical-basolateral cargo segregation at the TGN as is typical for ductal cells, affirming a central role for Rho-signaling in different aspects of the hepatocytic polarity phenotype. Nevertheless, Rho-induced cargo segregation was not sufficient to target the apical protein directly; thus, failure to recruit apical targeting machinery also contributes to its indirect itinerary.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Yong CQY, Valiyaveettil S, Tang BL. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:1509. [PMID: 32111046 PMCID: PMC7084551 DOI: 10.3390/ijerph17051509] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
Fragmented or otherwise miniaturized plastic materials in the form of micro- or nanoplastics have been of nagging environmental concern. Perturbation of organismal physiology and behavior by micro- and nanoplastics have been widely documented for marine invertebrates. Some of these effects are also manifested by larger marine vertebrates such as fishes. More recently, possible effects of micro- and nanoplastics on mammalian gut microbiota as well as host cellular and metabolic toxicity have been reported in mouse models. Human exposure to micro- and nanoplastics occurs largely through ingestion, as these are found in food or derived from food packaging, but also in a less well-defined manner though inhalation. The pathophysiological consequences of acute and chronic micro- and nanoplastics exposure in the mammalian system, particularly humans, are yet unclear. In this review, we focus on the recent findings related to the potential toxicity and detrimental effects of micro- and nanoplastics as demonstrated in mouse models as well as human cell lines. The prevailing data suggest that micro- and nanoplastics accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences. There is a need for cellular and systemic toxicity due to micro- and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.
Collapse
Affiliation(s)
- Cheryl Qian Ying Yong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|