1
|
Bhalla K, Sánchez León-Hing E, Huang YH, French V, Hu G, Wang J, Kretschmer M, Qu X, Moreira R, Foster EJ, Johnson P, Kronstad JW. Polyphosphatases have a polyphosphate-independent influence on the virulence of Cryptococcus neoformans. Infect Immun 2025; 93:e0007225. [PMID: 40071953 PMCID: PMC11977306 DOI: 10.1128/iai.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Cryptococcus neoformans, an invasive basidiomycete fungal pathogen, causes one of the most prevalent, life-threatening diseases in immunocompromised individuals and accounts for ~19% of AIDS-associated deaths. Therefore, understanding the pathogenesis of C. neoformans and its interactions with the host immune system is critical for developing therapeutics against cryptococcosis. Previous studies demonstrated that C. neoformans cells lacking polyphosphate (polyP), an immunomodulatory polyanionic storage molecule, display altered cell surface architecture but unimpaired virulence in a murine model of cryptococcosis. However, the relevance of cell surface changes and the role of hyperaccumulation of polyP in the virulence of C. neoformans remain unclear. Here we show that mutants with abundant polyP due to loss of the polyphosphatases Xpp1 and Epp1 are attenuated for virulence. The double mutant differed from the wild type during disease by demonstrating a higher fungal burden in disseminated organs at the experimental endpoint and by provoking an altered immune response. An analysis of triple mutants lacking the polyphosphatases and the Vtc4 protein for polyP synthesis also caused attenuated virulence in mice, thus suggesting an influence of Xpp1 and/or Epp1 independent of polyP levels. A more detailed characterization revealed that Xpp1 and Epp1 play multiple roles by contributing to the organization of the cell surface, virulence factor production, the response to stress, and mitochondrial function. Overall, we conclude that polyphosphatases have additional functions in the pathobiology of C. neoformans beyond an influence on polyP levels.IMPORTANCECryptococcus neoformans causes one of the most prevalent fungal diseases in people with compromised immune systems and accounts for ~19% of AIDS-associated deaths worldwide. The continual increase in the incidence of fungal infections and limited treatment options necessitate the development of new antifungal drugs and improved diagnostics. Polyphosphate (polyP), an under-explored biopolymer, functions as a storage molecule, modulates the host immune response, and contributes to the ability of some fungal and bacterial pathogens to cause disease. However, the role of polyP in cryptococcal disease remains unclear. In this study, we report that the polyphosphatase enzymes that regulate polyP synthesis and turnover contribute to the virulence of C. neoformans in a mouse model of cryptococcosis. The polyphosphatases influenced the survival of C. neoformans in macrophages and altered the host immune response. In addition, the mutants lacking the enzymes have changes in cell surface architecture and size, as well as defects in both mitochondrial function and the stress response. By using mutants defective in the polyphosphatases and polyP synthesis, we demonstrate that many of the phenotypic contributions of the polyphosphatases are independent of polyP.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez León-Hing
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria French
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jen Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - E. Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Jong T, Stack CM, Moffitt MC, Morton CO. An Introduction to the Influence of Nutritional Factors on the Pathogenesis of Opportunist Fungal Pathogens in Humans. Pathogens 2025; 14:335. [PMID: 40333109 PMCID: PMC12030028 DOI: 10.3390/pathogens14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans are opportunistic pathogens in humans. They usually infect individuals whose immune system is compromised due to either a primary infection, e.g., HIV/AIDS, or as part of treatment for another condition, e.g., stem cell or solid organ transplant. In hosts with a weakened immune system, these fungi can cause life-threatening infections. Unlike true pathogens, opportunistic pathogens do not have specific mechanisms to overcome a healthy host, requiring a different approach to understand how they cause infection. The ability of fungi to adapt to various environmental conditions, including the human host, is critical for virulence. In humans, micronutrient metals, such as iron, are sequestered to reduce serum concentrations, which helps to inhibit microbial growth. Other human tissues may increase metal concentrations to toxic levels to prevent infection by pathogens. The ability of fungi to acquire or detoxify nutrients, such as iron or copper, from the host is essential for the establishment of infection. In this review, the role of fungal nutrition will be discussed in relation to opportunistic fungal pathogens. It will focus on the acquisition of micronutrients, e.g., iron, copper, and zinc, and how this enables these fungi to circumvent host nutritional immunity.
Collapse
Affiliation(s)
| | | | | | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia (C.M.S.); (M.C.M.)
| |
Collapse
|
3
|
Sah SK, Yadav A, Stahl T, Hayes JJ, Bulger M, Rustchenko E. Echinocandin Adaptation in Candida albicans Is Accompanied by Altered Chromatin Accessibility at Gene Promoters and by Cell Wall Remodeling. J Fungi (Basel) 2025; 11:110. [PMID: 39997404 PMCID: PMC11856910 DOI: 10.3390/jof11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Infections by the major opportunistic pathogen of human Candida albicans are commonly treated with echinocandin (ECN) drugs. However, C. albicans can adapt to grow in the presence of certain amounts of ECNs. Prior studies by several laboratories have defined multiple genes, as well as mechanisms involving induced aneuploidy, that can govern this. Still, the mechanisms of ECN adaptation are not fully understood. Here, we use genome-wide profiling of chromatin accessibility by ATAC-seq to determine if ECN adaptation is reflected in changes in the chromatin landscape in the absence of aneuploidy. We find that drug adaptation is coupled with multiple changes in chromatin accessibility genome-wide, which occur predominantly in gene promoter regions. Areas of increased accessibilities in promoters are enriched with the binding motifs for at least two types of transcription factors: zinc finger and basic leucine zipper. We also find that chromatin changes are often associated with differentially expressed genes including genes with functions relevant to the ECN-adapted phenotype, such as cell wall biosynthesis. Consistent with this, we find that the cell wall is remodeled in ECN-adapted mutants, with chitin up and glucan down and increased cell surface exposure. A full understanding of ECN adaptation processes is of critical importance for the prevention of clinical resistance.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.K.S.); (A.Y.); (J.J.H.)
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.K.S.); (A.Y.); (J.J.H.)
| | - Tyler Stahl
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffrey J. Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.K.S.); (A.Y.); (J.J.H.)
| | - Michael Bulger
- Center for Pediatric Biochemical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.K.S.); (A.Y.); (J.J.H.)
| |
Collapse
|
4
|
Avelar GM, Pradhan A, Ma Q, Hickey E, Leaves I, Liddle C, Rodriguez Rondon AV, Kaune AK, Shaw S, Maufrais C, Sertour N, Bain JM, Larcombe DE, de Assis LJ, Netea MG, Munro CA, Childers DS, Erwig LP, Brown GD, Gow NAR, Bougnoux ME, d'Enfert C, Brown AJP. A CO 2 sensing module modulates β-1,3-glucan exposure in Candida albicans. mBio 2024; 15:e0189823. [PMID: 38259065 PMCID: PMC10865862 DOI: 10.1128/mbio.01898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases β-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to β-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Alejandra V. Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ann-Kristin Kaune
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Carol A. Munro
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Gordon D. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577887. [PMID: 38352318 PMCID: PMC10862840 DOI: 10.1101/2024.01.29.577887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
- Current affiliation: Planasa, Valladolid, Spain
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Martín-Cardoso H, Bundó M, Val-Torregrosa B, San Segundo B. Phosphate accumulation in rice leaves promotes fungal pathogenicity and represses host immune responses during pathogen infection. FRONTIERS IN PLANT SCIENCE 2024; 14:1330349. [PMID: 38298608 PMCID: PMC10827867 DOI: 10.3389/fpls.2023.1330349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Rice is one of the most important crops in the world and a staple food for more than half of the world's population. At present, the blast disease caused by the fungus Magnaporthe oryzae poses a severe threat to food security through reduction of rice yields worldwide. High phosphate fertilization has previously been shown to increase blast susceptibility. At present, however, our knowledge on the mechanisms underpinning phosphate-induced susceptibility to M. oryzae infection in rice is limited. In this work, we conducted live cell imaging on rice sheaths inoculated with a M. oryzae strain expressing two fluorescently-tagged M. oryzae effectors. We show that growing rice under high phosphate fertilization, and subsequent accumulation of phosphate in leaf sheaths, promotes invasive growth of M. oryzae. Consistent with this, stronger expression of M. oryzae effectors and Pathogenicity Mitogen-activated Protein Kinase (PMK1) occurs in leaf sheaths of rice plants grown under high a phosphate regime. Down-regulation of fungal genes encoding suppressors of plant cell death and up-regulation of plant cell death-inducing effectors also occurs in sheaths of phosphate over-accumulating rice plants. Treatment with high Pi causes alterations in the expression of fungal phosphate transporter genes potentially contributing to pathogen virulence. From the perspective of the plant, Pi accumulation in leaf sheaths prevents H2O2 accumulation early during M. oryzae infection which was associated to a weaker activation of Respiratory Burst Oxidase Homologs (RBOHs) genes involved in reactive oxygen species (ROS) production. Further, a weaker activation of defense-related genes occurs during infection in rice plants over-accumulating phosphate. From these results, it can be concluded that phosphate fertilization has an effect on the two interacting partners, pathogen and host. Phosphate-mediated stimulation of fungal effector genes (e.g., potentiation of fungal pathogenicity) in combination with repression of pathogen-inducible immune responses (e.g., ROS accumulation, defense gene expression) explains higher colonization by M. oryzae in rice tissues accumulating phosphate. Phosphate content can therefore be considered as an important factor in determining the outcome of the rice/M. oryzae interaction. As fertilizers and pesticides are commonly used in rice cultivation to maintain optimal yield and to prevent losses caused by pathogens, a better understanding of how phosphate impacts blast susceptibility is crucial for developing strategies to rationally optimize fertilizer and pesticide use in rice production.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Beatriz Val-Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/de la Vall Moronta, CRAG Building, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
7
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
King WR, Acosta-Zaldívar M, Qi W, Cherico N, Cooke L, Köhler JR, Patton-Vogt J. Glycerophosphocholine provision rescues Candida albicans growth and signaling phenotypes associated with phosphate limitation. mSphere 2023; 8:e0023123. [PMID: 37843297 PMCID: PMC10732039 DOI: 10.1128/msphere.00231-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Candida albicans is the most commonly isolated species from patients suffering from invasive fungal disease. C. albicans is most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role in C. albicans virulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi), C. albicans can utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis in C. albicans. We find that GPC can substitute for Pi by many though not all criteria and is likely a relevant physiological phosphate source for C. albicans.
Collapse
Affiliation(s)
- William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Maikel Acosta-Zaldívar
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wanjun Qi
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Cherico
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren Cooke
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Julia R. Köhler
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated Stress Response Leads to Novel Acquired Stress Resistance in a Pathogenic Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545716. [PMID: 37781605 PMCID: PMC10541095 DOI: 10.1101/2023.06.20.545716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Hanxi Tang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242
| | | | - Bin Z. He
- Biology Department, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Wangsanut T, Arnold SJY, Jilani SZ, Marzec S, Monsour RC, Rolfes RJ. Grf10 regulates the response to copper, iron, and phosphate in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad070. [PMID: 36966423 PMCID: PMC10234403 DOI: 10.1093/g3journal/jkad070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
The pathogenic yeast, Candida albicans, and other microbes must be able to handle drastic changes in nutrient availability within the human host. Copper, iron, and phosphate are essential micronutrients for microbes that are sequestered by the human host as nutritional immunity; yet high copper levels are employed by macrophages to induce toxic oxidative stress. Grf10 is a transcription factor important for regulating genes involved in morphogenesis (filamentation, chlamydospore formation) and metabolism (adenylate biosynthesis, 1-carbon metabolism). The grf10Δ mutant exhibited resistance to excess copper in a gene dosage-dependent manner but grew the same as the wild type in response to other metals (calcium, cobalt, iron, manganese, and zinc). Point mutations in the conserved residues D302 and E305, within a protein interaction region, conferred resistance to high copper and induced hyphal formation similar to strains with the null allele. The grf10Δ mutant misregulated genes involved with copper, iron, and phosphate uptake in YPD medium and mounted a normal transcriptional response to high copper. The mutant accumulated lower levels of magnesium and phosphorus, suggesting that copper resistance is linked to phosphate metabolism. Our results highlight new roles for Grf10 in copper and phosphate homeostasis in C. albicans and underscore the fundamental role of Grf10 in connecting these with cell survival.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvia J Y Arnold
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Safia Z Jilani
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
- Center for Sustainable Nanotechnology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Marzec
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Robert C Monsour
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
11
|
Blocking Polyphosphate Mobilization Inhibits Pho4 Activation and Virulence in the Pathogen Candida albicans. mBio 2022; 13:e0034222. [PMID: 35575514 PMCID: PMC9239153 DOI: 10.1128/mbio.00342-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability of pathogenic fungi to obtain essential nutrients from the host is vital for virulence. In Candida albicans, acquisition of the macronutrient phosphate is regulated by the Pho4 transcription factor and is important for both virulence and resistance to host-encountered stresses. All cells store phosphate in the form of polyphosphate (polyP), a ubiquitous polymer comprising tens to hundreds of phosphate residues. Release of phosphate from polyP is one of the first responses evoked in response to phosphate starvation, and here, we sought to explore the importance of polyP mobilization in the pathobiology of C. albicans. We found that two polyphosphatases, Ppn1 and Ppx1, function redundantly to release phosphate from polyP in C. albicans. Strikingly, we reveal that blocking polyP mobilization prevents the activation of the Pho4 transcription factor: following Pi starvation, Pho4 fails to accumulate in the nucleus and induce Pi acquisition genes in ppn1Δ ppx1Δ cells. Consequently, ppn1Δ ppx1Δ cells display impaired resistance to the same range of stresses that require Pho4 for survival. In addition, cells lacking both polyphosphatases are exquisitely sensitive to DNA replication stress, indicating that polyP mobilization is needed to support the phosphate-demanding process of DNA replication. Blocking polyP mobilization also results in significant morphological defects, as ppn1Δ ppx1Δ cells form large pseudohypha-like cells that are resistant to serum-induced hypha formation. Thus, polyP mobilization impacts key processes important for the pathobiology of C. albicans, and consistent with this, we found that blocking this process attenuates the virulence of this important human fungal pathogen.
Collapse
|
12
|
Lessons from protozoans: Phosphate sensing and polyphosphate storage in fungi. PLoS Pathog 2022; 18:e1010298. [PMID: 35239748 PMCID: PMC8893339 DOI: 10.1371/journal.ppat.1010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Wang Y, Zhou J, Zou Y, Chen X, Liu L, Qi W, Huang X, Chen C, Liu NN. Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Rep 2022; 38:110293. [PMID: 35081357 DOI: 10.1016/j.celrep.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xinhua Huang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Bhalla K, Qu X, Kretschmer M, Kronstad JW. The phosphate language of fungi. Trends Microbiol 2021; 30:338-349. [PMID: 34479774 DOI: 10.1016/j.tim.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Phosphate is an essential macronutrient for fungal proliferation as well as a key mediator of antagonistic, beneficial, and pathogenic interactions between fungi and other organisms. In this review, we summarize recent insights into the integration of phosphate metabolism with mechanisms of fungal adaptation that support growth and survival. In particular, we highlight aspects of phosphate sensing important for responses to stress and regulation of cell-surface changes with an impact on fungal pathogenesis, host immune responses, and disease outcomes. Additionally, new studies provide insights into the influence of phosphate availability on cooperative or antagonistic interactions between fungi and other microbes, the associations of mycorrhizal and endophytic fungi with plants, and connections with plant immunity. Overall, phosphate homeostasis is emerging as an integral part of fungal metabolism and communication to support diverse lifestyles.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
16
|
Zhang Y, Tang C, Zhang Z, Li S, Zhao Y, Weng L, Zhang H. Deletion of the ATP2 Gene in Candida albicans Blocks Its Escape From Macrophage Clearance. Front Cell Infect Microbiol 2021; 11:643121. [PMID: 33937095 PMCID: PMC8085345 DOI: 10.3389/fcimb.2021.643121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
Macrophages provide the first-line defense against invasive fungal infections and, therefore, escape from macrophage becomes the basis for the establishment of Candida albicans invasive infection. Here, we found that deletion of ATP2 (atp2Δ/Δ) in C. albicans resulted in a dramatic decrease from 69.2% (WT) to 1.2% in the escape rate in vitro. The effect of ATP2 on macrophage clearance stands out among the genes currently known to affect clearance. In the normal mice, the atp2Δ/Δ cells were undetectable in major organs 72 h after systemic infection, while WT cells persisted in vivo. However, in the macrophage-depleted mice, atp2Δ/Δ could persist for 72 h at an amount comparable to that at 24 h. Regarding the mechanism, WT cells sustained growth and switched to hyphal form, which was more conducive to escape from macrophages, in media that mimic the glucose-deficient environment in macrophages. In contrast, atp2Δ/Δ cells can remained viable but were unable to complete morphogenesis in these media, resulting in them being trapped within macrophages in the yeast form. Meanwhile, atp2Δ/Δ cells were killed by oxidative stress in alternative carbon sources by 2- to 3-fold more than WT cells. Taken together, ATP2 deletion prevents C. albicans from escaping macrophage clearance, and therefore ATP2 has a functional basis as a drug target that interferes with macrophage clearance.
Collapse
Affiliation(s)
- Yishan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Chuanyan Tang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Austermeier S, Kasper L, Westman J, Gresnigt MS. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr Opin Microbiol 2020; 58:15-23. [DOI: 10.1016/j.mib.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
|
18
|
Abstract
In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.
Collapse
|
19
|
König A, Müller R, Mogavero S, Hube B. Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cell Microbiol 2020; 23:e13272. [PMID: 32978997 DOI: 10.1111/cmi.13272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
21
|
A Biodegradable Antifungal-Loaded Sol-Gel Coating for the Prevention and Local Treatment of Yeast Prosthetic-Joint Infections. MATERIALS 2020; 13:ma13143144. [PMID: 32679668 PMCID: PMC7411966 DOI: 10.3390/ma13143144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo-inorganic sol-gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol-gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol-gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol-gel was sufficient to reduce C. albicans biofilms, and the sol-gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.
Collapse
|
22
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
23
|
Phosphate in Virulence of Candida albicans and Candida glabrata. J Fungi (Basel) 2020; 6:jof6020040. [PMID: 32224872 PMCID: PMC7344514 DOI: 10.3390/jof6020040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.
Collapse
|
24
|
Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance. mBio 2020; 11:mBio.03225-19. [PMID: 32184254 PMCID: PMC7078483 DOI: 10.1128/mbio.03225-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency. The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.
Collapse
|
25
|
Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. mSphere 2019; 4:4/5/e00620-19. [PMID: 31511371 PMCID: PMC6739497 DOI: 10.1128/msphere.00620-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections. The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans. We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo. This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions. IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.
Collapse
|
26
|
Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. Fungal Kinases With a Sweet Tooth: Pleiotropic Roles of Their Phosphorylated Inositol Sugar Products in the Pathogenicity of Cryptococcus neoformans Present Novel Drug Targeting Opportunities. Front Cell Infect Microbiol 2019; 9:248. [PMID: 31380293 PMCID: PMC6660261 DOI: 10.3389/fcimb.2019.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Cecilia Li
- Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
28
|
Lev S, Rupasinghe T, Desmarini D, Kaufman-Francis K, Sorrell TC, Roessner U, Djordjevic JT. The PHO signaling pathway directs lipid remodeling in Cryptococcus neoformans via DGTS synthase to recycle phosphate during phosphate deficiency. PLoS One 2019; 14:e0212651. [PMID: 30789965 PMCID: PMC6383925 DOI: 10.1371/journal.pone.0212651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
The phosphate sensing and acquisition (PHO) pathway of Cryptococcus neoformans is essential for growth in phosphate-limiting conditions and for dissemination of infection in a mouse model. Its key transcription factor, Pho4, regulates expression of genes controlling the acquisition of phosphate from both external and cellular sources. One such gene, BTA1, is highly up-regulated during phosphate starvation. Given that a significant proportion of cellular phosphate is incorporated into phospholipids, and that the Pho4-dependent BTA1 gene encodes an enzyme predicted to catalyse production of a phosphorus-free betaine lipid, we investigated whether phospholipids provide an accessible reservoir of phosphate during phosphate deficiency. By comparing lipid profiles of phosphate-starved WT C. neoformans, PHO4 (pho4Δ) and BTA1 (bta1Δ) deletion mutants using thin layer chromatography and liquid chromatography mass spectrometry, we showed that phosphatidylcholine (PC) is substituted by the phosphorus-free betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylgyceryl hydroxymethyl-N,N,N-trimethyl-beta-alanine (DGTA) in a Pho4- and Bta1-dependent manner, and that BTA1 encodes a functional DGTS synthase. Synthesis of DGTA tightly correlated with that of DGTS, consistent with DGTS being the precursor of DGTA. Similar to pho4Δ, bta1Δ grew more slowly than WT in cell culture medium (RPMI) and was hypovirulent in a murine model of cryptococcosis. In contrast to pho4Δ, bta1Δ tolerated alkaline pH and disseminated to the brain. Our results demonstrate that Bta1-dependent substitution of PC by betaine lipids is tightly regulated in C. neoformans by the PHO pathway, to conserve phosphate and preserve membrane integrity and function. This phospholipid remodeling strategy may also contribute to cryptococcal virulence during host infection.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Keren Kaufman-Francis
- Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Tania Christine Sorrell
- Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, Fungal Pathogenesis Group, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School-Westmead, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
29
|
Day AM, McNiff MM, da Silva Dantas A, Gow NAR, Quinn J. Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris. mSphere 2018; 3:e00506-18. [PMID: 30355673 PMCID: PMC6200985 DOI: 10.1128/msphere.00506-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/14/2023] Open
Abstract
Candida auris has recently emerged as an important, multidrug-resistant fungal pathogen of humans. Comparative studies indicate that despite high levels of genetic divergence, C. auris is as virulent as the most pathogenic member of the genus, Candida albicans However, key virulence attributes of C. albicans, such as morphogenetic switching, are not utilized by C. auris, indicating that this emerging pathogen employs alternative strategies to infect and colonize the host. An important trait required for the pathogenicity of many fungal pathogens is the ability to adapt to host-imposed stresses encountered during infection. Here, we investigated the relative resistance of C. auris and other pathogenic Candida species to physiologically relevant stresses and explored the role of the evolutionarily conserved Hog1 stress-activated protein kinase (SAPK) in promoting stress resistance and virulence. In comparison to C. albicans, C. auris is relatively resistant to hydrogen peroxide, cationic stress, and cell-wall-damaging agents. However, in contrast to other Candida species examined, C. auris was unable to grow in an anaerobic environment and was acutely sensitive to organic oxidative-stress-inducing agents. An analysis of C. aurishog1Δ cells revealed multiple roles for this SAPK in stress resistance, cell morphology, aggregation, and virulence. These data demonstrate that C. auris has a unique stress resistance profile compared to those of other pathogenic Candida species and that the Hog1 SAPK has pleiotropic roles that promote the virulence of this emerging pathogen.IMPORTANCE The rapid global emergence and resistance of Candidaauris to current antifungal drugs highlight the importance of understanding the virulence traits exploited by this human fungal pathogen to cause disease. Here, we characterize the stress resistance profile of C. auris and the role of the Hog1 stress-activated protein kinase (SAPK) in stress resistance and virulence. Our findings that C. auris is acutely sensitive to certain stresses may facilitate control measures to prevent persistent colonization in hospital settings. Furthermore, our observation that the Hog1 SAPK promotes C. auris virulence akin to that reported for many other pathogenic fungi indicates that antifungals targeting Hog1 signaling would be broad acting and effective, even on emerging drug-resistant pathogens.
Collapse
Affiliation(s)
- Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Megan M McNiff
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandra da Silva Dantas
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A R Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 2018; 34:139. [DOI: 10.1007/s11274-018-2523-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
|
31
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
32
|
Cao K, Lai F, Zhao XL, Wei QX, Miao XY, Ge R, He QY, Sun X. The mechanism of iron-compensation for manganese deficiency of Streptococcus pneumoniae. J Proteomics 2018; 184:62-70. [DOI: 10.1016/j.jprot.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
|
33
|
Lev S, Djordjevic JT. Why is a functional PHO pathway required by fungal pathogens to disseminate within a phosphate-rich host: A paradox explained by alkaline pH-simulated nutrient deprivation and expanded PHO pathway function. PLoS Pathog 2018; 14:e1007021. [PMID: 29928051 PMCID: PMC6013017 DOI: 10.1371/journal.ppat.1007021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, Australia
- Sydney Medical School-Westmead, University of Sydney, Westmead, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, Australia
- Sydney Medical School-Westmead, University of Sydney, Westmead, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
34
|
Lipid Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:jof4020050. [PMID: 29677130 PMCID: PMC6023442 DOI: 10.3390/jof4020050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs), are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs), are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian) cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.
Collapse
|
35
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
37
|
Urrialde V, Alburquerque B, Guirao-Abad JP, Pla J, Argüelles JC, Alonso-Monge R. Arsenic inorganic compounds cause oxidative stress mediated by the transcription factor PHO4 in Candida albicans. Microbiol Res 2017; 203:10-18. [DOI: 10.1016/j.micres.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
|
38
|
Phosphate Acquisition and Virulence in Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5030048. [PMID: 28829379 PMCID: PMC5620639 DOI: 10.3390/microorganisms5030048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
The ability of pathogenic fungi to acquire essential macro and micronutrients during infection is a well-established virulence trait. Recent studies in the major human fungal pathogens Candida albicans and Cryptococcus neoformans have revealed that acquisition of the essential macronutrient, phosphate, is essential for virulence. The phosphate sensing and acquisition pathway in fungi, known as the PHO pathway, has been extensively characterized in the model yeast Saccharomyces cerevisiae. In this review, we highlight recent advances in phosphate sensing and signaling mechanisms, and use the S. cerevisiae PHO pathway as a platform from which to compare the phosphate acquisition and storage strategies employed by several human pathogenic fungi. We also explore the multi-layered roles of phosphate acquisition in promoting fungal stress resistance to pH, cationic, and oxidative stresses, and describe emerging roles for the phosphate storage molecule polyphosphate (polyP). Finally, we summarize the recent studies supporting the necessity of phosphate acquisition in mediating the virulence of human fungal pathogens, highlighting the concept that this requirement is intimately linked to promoting resistance to host-imposed stresses.
Collapse
|
39
|
Riekhof WR, Nickerson KW. Quorum sensing in Candida albicans: farnesol versus farnesoic acid. FEBS Lett 2017; 591:1637-1640. [PMID: 28603849 DOI: 10.1002/1873-3468.12694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Read the Original article at doi: 10.1002/1873-3468.12636.
Collapse
Affiliation(s)
- Wayne R Riekhof
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Kenneth W Nickerson
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
40
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
41
|
He BZ, Zhou X, O'Shea EK. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. eLife 2017; 6:25157. [PMID: 28485712 PMCID: PMC5446240 DOI: 10.7554/elife.25157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/29/2017] [Indexed: 01/23/2023] Open
Abstract
Although combinatorial regulation is a common feature in gene regulatory networks, how it evolves and affects network structure and function is not well understood. In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are required for gene induction and survival during phosphate starvation. In the related human commensal C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate starvation and is only partially required for inducing PHO genes. Phylogenetic survey suggests that reduced dependence on Pho2 evolved in C. glabrata and closely related species. In S. cerevisiae, less Pho2-dependent Pho4 orthologs induce more genes. In C. glabrata, its Pho4 binds to more locations and induces three times as many genes as Pho4 in S. cerevisiae does. Our work shows how evolution of combinatorial regulation allows for rapid expansion of a gene regulatory network’s targets, possibly extending its physiological functions. The diversity of life on Earth has intrigued generations of scientists and nature lovers alike. Research over recent decades has revealed that much of the diversity we can see did not require the invention of new genes. Instead, living forms diversified mostly by using old genes in new ways – for example, by changing when or where an existing gene became active. This kind of change is referred to as “regulatory evolution”. A class of proteins called transcription factors are hot spots in regulatory evolution. These proteins recognize specific sequences of DNA to control the activity of other genes, and so represent the “readers” of the genetic information. Small changes to how a transcription factor is regulated, or the genes it targets, can lead to dramatic changes in an organism. Before we can understand how life on Earth evolved to be so diverse, scientists must first answer how transcription factors evolve and what consequences this has on their target genes. So far, most studies of regulatory evolution have focused on networks of transcription factors and genes that control how an organism develops. He et al. have now studied a regulatory network that is behind a different process, namely how an organism responds to stress or starvation. These two types of regulatory networks are structured differently and work in different ways. These differences made He et al. wonder if the networks evolved differently too. The chemical phosphate is an essential nutrient for all living things, and He et al. compared how two different species of yeast responded to a lack of phosphate. The key difference was how much a major transcription factor known as Pho4 depended on a so-called co-activator protein named Pho2 to carry out its role. Baker’s yeast (Saccharomyces cerevisiae), which is commonly used in laboratory experiments, requires both Pho4 and Pho2 to activate about 20 genes when inorganic phosphate is not available in its environment. However, in a related yeast species called Candida glabrata, Pho4 has evolved to depend less on Pho2. He et al. went on to show that, as well as being less dependent on Pho2, Pho4 in C. glabrata activates more than three times as many genes as Pho4 in S. cerevisiae does in the absence of phosphate. These additional gene targets for Pho4 in C. glabrata are predicted to extend the network’s activities, and allow it to regulate new process including the yeast’s responses to other types of stress and the building of the yeast’s cell wall. Together these findings show a new way that regulatory networks can evolve, that is, by reducing its dependence on the co-activator, a transcription factor can expand the number of genes it targets. This has not been seen for regulatory networks related to development, suggesting that different networks can indeed evolve in different ways. Lastly, because disease-causing microbes are often stressed inside their hosts and C. glabrata sometimes infects humans, understanding how this yeast’s response to stress has evolved may lead to new ways to prevent and treat this infection.
Collapse
Affiliation(s)
- Bin Z He
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Xu Zhou
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
42
|
Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH. mSphere 2017; 2:mSphere00381-16. [PMID: 28144629 PMCID: PMC5266496 DOI: 10.1128/msphere.00381-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022] Open
Abstract
Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical level. Induction of phosphate acquisition genes leads to the uptake of free phosphate via transporters. By blocking the PHO pathway using a Pho4 transcription factor mutant (pho4Δ mutant), we demonstrate the importance of the pathway for cryptococcal dissemination and the establishment of brain infection in murine models. Specifically, we show that reduced dissemination of the pho4Δ mutant to the brain is due to an alkaline pH tolerance defect, as alkaline pH mimics the conditions of phosphate deprivation. The end result is inhibited proliferation in host tissues, particularly in blood.
Collapse
|