1
|
Zhou Y, Zeng H, Ye L, Wang J, Feng G, Chen Y, Fang D, Lu J, Lu G. The role of cyclin dependent kinase molecules in the pathogenesis and immune cell infiltration of TNBC in silicosis: Based on core stem cell related genes TPX2 and CCNA2. Int J Biol Macromol 2025; 306:141683. [PMID: 40037461 DOI: 10.1016/j.ijbiomac.2025.141683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Silicosis is a pulmonary fibrotic disease caused by long-term inhalation of silica dust. CDKs regulate the process of cell cycle by binding with cyclin. This study revealed the role of cyclin-dependent kinase molecules in the pathogenesis of TNBC in silicosis and analyzed its influence on immune cell infiltration. By retrospective analysis of clinical samples from silicosis patients and TNBC patients, we evaluated the expression level of CDKs molecules. Then, the effect of silica dust exposure on breast cancer cell cycle was simulated using in vitro cell culture technology, and the expression changes of TPX2 and CCNA2 genes were observed. Immunohistochemical techniques were used to detect the infiltration of immune cells in silicosis and TNBC tissue samples, and to analyze its correlation with the expression of CDKs. The findings from the conducted research indicated that there was a significant elevation in the expression levels of cyclin-dependent kinases, or CDKs, in patients diagnosed with silicosis as well as those with triple-negative breast cancer, or TNBC. Through immunohistochemical analysis, it was further revealed that there was an increased infiltration of immune cells within the tissues of both silicosis and TNBC patients. Interestingly, this infiltration of immune cells was found to be positively correlated with the expression levels of CDK molecules. The up-regulated expression of the TPX2 and CCNA2 genes is believed to be associated with abnormal regulation of the cell cycle, which in turn affects the infiltration patterns of immune cells within the affected tissues.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Breast and Thyroid Surgery, The Third People's Hospital of Hechi, Hechi 547000, Guangxi, PR China
| | - Huifang Zeng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Li Ye
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Jin Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Guangqing Feng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Yongcheng Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China.
| | - Jinlan Lu
- Department of Stomatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden.
| |
Collapse
|
2
|
Marescal O, Cheeseman IM. 19S proteasome loss causes monopolar spindles through ubiquitin-independent KIF11 degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632038. [PMID: 39829864 PMCID: PMC11741298 DOI: 10.1101/2025.01.08.632038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest. We find that the monopolar spindle phenotype is caused by ubiquitin-independent proteasomal degradation of the motor protein KIF11 upon loss of 19S proteins. Thus, negative regulation of 20S-mediated proteasome degradation is essential for mitotic progression and 19S and 20S proteasome components can function independently outside of the canonical 26S structure. This work reveals a role for the proteasome in spindle formation and identifies the effects of ubiquitin-independent degradation on cell cycle control.
Collapse
Affiliation(s)
- Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
3
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. HURP regulates Kif18A recruitment and activity to synergistically control microtubule dynamics. Nat Commun 2024; 15:9687. [PMID: 39516196 PMCID: PMC11549086 DOI: 10.1038/s41467-024-53691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determine the binding mode of HURP to microtubules using cryo-EM. The structure helps rationalize why HURP functions as a microtubule stabilizer. Additionally, HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observe that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in microtubule length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
- Physics Department, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Yu W, Han S, Hu S, Ru L, Hua C, Xue G, Zhang G, Lv K, Ge H, Wang M, Zheng L, Zhou J, Hou S, Teng Y, Deng W, Guo W. KIF15 promotes human glioblastoma progression under the synergistic transactivation of REST and P300. Int J Biol Sci 2024; 20:5127-5144. [PMID: 39430242 PMCID: PMC11488581 DOI: 10.7150/ijbs.98668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Glioblastoma (GBM) is highly invasive and lethal. The failure to cure GBM highlights the necessity of developing more effective targeted therapeutic strategies. KIF15 is a motor protein to be involved in cell mitosis promotion, cell structure assembly and cell signal transduction. The precise biological function and the potential upstream regulatory mechanisms of KIF15 in GBM remain elusive. Here, we demonstrated that KIF15 was abnormally up-regulated in GBM and predicted poor prognosis of GBM patients. KIF15 promotes GBM cell proliferation, metastasis and cell cycle progression. REST could bind to KIF15 promoter and transactivate KIF15. Furthermore, REST interacts with P300 and depends on its histone acetyltransferase (HAT) activity to co-regulate KIF15 expression. Both REST and P300 were highly expressed in GBM and predicted poor prognosis of GBM patients alone or in combination with KIF15. The tumorigenic function of KIF15 in GBM was regulated by REST in vitro and in vivo and the combinational treatment of cell cycle inhibitor Palbociclib with P300 HAT inhibitor inhibited GBM xenografts survival more significantly. Our findings indicate that KIF15 promotes GBM progression under the synergistic transactivation of REST and P300. P300/REST/KIF15 signaling axis is expected to be served as a cascade of candidate therapeutic targets in anti-GBM.
Collapse
Affiliation(s)
- Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shilong Han
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyuan Ru
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunyu Hua
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guoqing Xue
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guohui Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kuan Lv
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hanxiao Ge
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meiyi Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lina Zheng
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Zhou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yun Teng
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
6
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. RESEARCH SQUARE 2024:rs.3.rs-4249615. [PMID: 38854046 PMCID: PMC11160874 DOI: 10.21203/rs.3.rs-4249615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Yang J, Liu L, Xu X, Zeng H. KIF15 promotes the development and progression of chordoma via activating PI3K-AKT signalling pathway. Heliyon 2024; 10:e29386. [PMID: 38681556 PMCID: PMC11053184 DOI: 10.1016/j.heliyon.2024.e29386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Aims Despite its implication in various human cancers, the expression and functional significance of Kinesin family member 15 (KIF15) in chordomas remain unexplored. Main methods The evaluation of KIF15 protein levels was conducted through immunohistochemistry (IHC) staining and Western blot analysis. Cell proliferation was quantified using MTT and CCK8 assays, whereas cell migration was examined using wound healing and Transwell assays. Furthermore, flow cytometric analysis was utilized to assess cell apoptosis and the cell cycle. Additionally, in vivo experiments were performed using a mouse xenograft model. Key findings Our study revealed significantly higher expression of KIF15 in stage III chordoma tissues compared to stage II tissues. Knockdown of KIF15 led to notable inhibition of cell proliferation and migration, along with enhanced apoptosis and cell cycle arrest. In vivo studies further confirmed the inhibitory effects of KIF15 knockdown on chordoma tumour growth. In terms of mechanism, we identified the involvement of the PI3K-AKT signalling pathway mediated by KIF15 in chordomas. Notably, the anti-tumour effects of KIF15 deficiency on chordomas were partially reversed by the addition of an AKT activator. Significance KIF15 promotes chordoma development and progression through the activation of the PI3K-AKT signalling pathway. Thus, targeting KIF15 might be a promising therapeutic strategy for treating chordomas.
Collapse
Affiliation(s)
- Jinxing Yang
- First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518000, China
| | - Lijun Liu
- First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518000, China
| | - Xu Xu
- First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518000, China
| | - Hui Zeng
- First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
8
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589088. [PMID: 38645125 PMCID: PMC11030443 DOI: 10.1101/2024.04.11.589088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro , we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
|
9
|
Turaga SM, Vishwakarma V, Hembruff SL, Gibbs BK, Sabu P, Puri RV, Pathak HB, Samuel G, Godwin AK. Inducing Mitotic Catastrophe as a Therapeutic Approach to Improve Outcomes in Ewing Sarcoma. Cancers (Basel) 2023; 15:4911. [PMID: 37894278 PMCID: PMC10605681 DOI: 10.3390/cancers15204911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing sarcoma (EWS) is an aggressive pediatric malignancy of the bone and soft tissues in need of novel therapeutic options. To identify potential therapeutic targets, we focused on essential biological pathways that are upregulated by EWS-FLI1, the primary oncogenic driver of EWS, including mitotic proteins such as Aurora kinase A (AURKA) and kinesin family member 15 (KIF15) and its binding partner, targeting protein for Xklp2 (TPX2). KIF15/TPX2 cooperates with KIF11, a key mitotic kinesin essential for mitotic spindle orientation. Given the lack of clinical-grade KIF15/TPX2 inhibitors, we chose to target KIF11 (using SB-743921) in combination with AURKA (using VIC-1911) given that phosphorylation of KIF15S1169 by Aurora A is required for its targeting to the spindle. In vitro, the drug combination demonstrated strong synergy (Bliss score ≥ 10) at nanomolar doses. Colony formation assay revealed significant reduction in plating efficiency (1-3%) and increased percentage accumulation of cells in the G2/M phase with the combination treatment (45-52%) upon cell cycle analysis, indicating mitotic arrest. In vivo studies in EWS xenograft mouse models showed significant tumor reduction and overall effectiveness: drug combination vs. vehicle control (p ≤ 0.01), SB-743921 (p ≤ 0.01) and VIC-1911 (p ≤ 0.05). Kaplan-Meier curves demonstrated superior overall survival with the combination compared to vehicle or monotherapy arms (p ≤ 0.0001).
Collapse
Affiliation(s)
- Soumya M. Turaga
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Stacey L. Hembruff
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
| | - Benjamin K. Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Priya Sabu
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Division of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajni V. Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Glenson Samuel
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy Hospital, Kansas City, MO 64108, USA;
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
11
|
Begley MA, Solon AL, Davis EM, Sherrill MG, Ohi R, Elting MW. K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. Mol Biol Cell 2021; 32:br11. [PMID: 34668719 PMCID: PMC8694074 DOI: 10.1091/mbc.e20-06-0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule cross-linker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors.
Collapse
Affiliation(s)
- Marcus A Begley
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | - April L Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Herrmann A, Livanos P, Zimmermann S, Berendzen K, Rohr L, Lipka E, Müller S. KINESIN-12E regulates metaphase spindle flux and helps control spindle size in Arabidopsis. THE PLANT CELL 2021; 33:27-43. [PMID: 33751090 PMCID: PMC8136872 DOI: 10.1093/plcell/koaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.
Collapse
Affiliation(s)
- Arvid Herrmann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Pantelis Livanos
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Steffi Zimmermann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kenneth Berendzen
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Leander Rohr
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Elisabeth Lipka
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sabine Müller
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, Hu J, Wang X, Wang X, Su P, Chen S, Qu S, Shi B, Xiong X, Chen W, Dong X, Han B. KIF15-Mediated Stabilization of AR and AR-V7 Contributes to Enzalutamide Resistance in Prostate Cancer. Cancer Res 2020; 81:1026-1039. [PMID: 33277366 DOI: 10.1158/0008-5472.can-20-1965] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
The new generation androgen receptor (AR) pathway inhibitor enzalutamide can prolong the survival of patients with metastatic prostate cancer. However, resistance to enzalutamide inevitably develops in these patients, and the underlying mechanisms of this resistance are not fully defined. Here we demonstrate that the kinesin family member 15 (KIF15) contributes to enzalutamide resistance by enhancing the AR signaling in prostate cancer cells. KIF15 directly bound the N-terminus of AR/AR-V7 and prevented AR/AR-V7 proteins from degradation by increasing the protein association of ubiquitin-specific protease 14 (USP14) with AR/AR-V7. In turn, the transcriptionally active AR stimulated KIF15 expression. KIF15 inhibitors alone or in combination with enzalutamide significantly suppressed enzalutamide-resistant prostate cancer cell growth and xenograft progression. These findings highlight a key role of KIF15 in enabling prostate cancer cells to develop therapy resistance to enzalutamide and rationalize KIF15 as a potential therapeutic target. SIGNIFICANCE: These findings demonstrate how reciprocal activation between KIF15 and AR contributes to enzalutamide resistance in prostate cancer and highlights cotargeting KIF15 and AR as a therapeutic strategy for these tumors.
Collapse
Affiliation(s)
- Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenbo Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueli Wang
- Department of Pathology, Binzhou City Central Hospital, Binzhou, China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada. .,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Ding L, Li B, Yu X, Li Z, Li X, Dang S, Lv Q, Wei J, Sun H, Chen H, Liu M, Li G. KIF15 facilitates gastric cancer via enhancing proliferation, inhibiting apoptosis, and predict poor prognosis. Cancer Cell Int 2020; 20:125. [PMID: 32322172 PMCID: PMC7160940 DOI: 10.1186/s12935-020-01199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Background Kinesin superfamily proteins (KIFs) can transport membranous organelles and protein complexes in an ATP-dependent manner. Kinesin family member 15 (KIF15) is overexpressed in various cancers. However, the function of KIF15 in gastric cancer (GC) is still unclear. Methods GC patients’ data from The Cancer Genome Atlas (TCGA) were analyzed by bioinformatics methods. The expression of KIF15 was examined in GC and paracarcinoma tissues from 41 patients to verify the analysis results. The relationship between KIF15 expression and clinical characteristics were also observed by bioinformatics methods. Kaplan–Meier survival analysis of 122 GC patients in our hospital was performed to explore the relationship between KIF15 expression levels and GC patients’ prognosis. KIF15 was downregulated in GC cell lines AGS and SGC-7901 by transfecting a lentivirus-mediated shRNA plasmid targeting KIF15. In vitro, GC cell proliferation and apoptosis were detected by MTT assay, colony formation assay, and Annexin V-APC staining. In vivo, xenograft experiments were used to verify the in vitro results. Furthermore, Human Apoptosis Antibody Array kit was used to screen possible targets of KIF15 in GC cell lines. Results The bioinformatics results showed that KIF15 expression levels were higher in GC tissues than in normal tissues. IHC showed same results. High expression of KIF15 was statistical correlated with high age and early histologic stage. Kaplan–Meier curves indicated that high KIF15 expression predict poor prognosis in patients with GC. MTT assay and colony formation assay showed that KIF15 promote GC cell proliferation. Annexin V-APC staining found that KIF15 can inhibit GC cell apoptosis. Xenograft experiments reveal that downregulating KIF15 can inhibit GC tumor growth and promote GC apoptosis. Through detection of 43 anti-apoptotic proteins by the Human Apoptosis Antibody Array kit, it was confirmed that knocking down KIF15 can reduce seven anti-apoptotic proteins expression. Conclusions Taken together, our study revealed a critical role for KIF15 to inhibit GC cell apoptosis and promote GC cell proliferation. KIF15 may decrease anti-apoptotic proteins expression by regulating apoptosis pathways. High expression of KIF15 predicts a poor prognosis in patients with GC. KIF15 might be a novel prognostic biomarker and a therapeutic target for GC.
Collapse
Affiliation(s)
- Lixian Ding
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Bin Li
- 3Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Xiaotong Yu
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Zhongsheng Li
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Xinglong Li
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Shuwei Dang
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Qiang Lv
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jiufeng Wei
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Haixia Sun
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Hongsheng Chen
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Ming Liu
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Guodong Li
- 1Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China.,2Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
15
|
She ZY, Zhong N, Yu KW, Xiao Y, Wei YL, Lin Y, Li YL, Lu MH. Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes. Cell Div 2020; 15:6. [PMID: 32165913 PMCID: PMC7060529 DOI: 10.1186/s13008-020-00063-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microtubule organization is essential for bipolar spindle assembly and chromosome segregation, which contribute to genome stability. Kinesin-5 Eg5 is known to be a crucial regulator in centrosome separation and spindle assembly in mammalian somatic cells, however, the functions and mechanisms of Eg5 in male meiotic cell division remain largely unknown. Results In this study, we have found that Eg5 proteins are expressed in mouse spermatogonia, spermatocytes and spermatids. After Eg5 inhibition by specific inhibitors Monastrol, STLC and Dimethylenastron, the meiotic spindles of dividing spermatocytes show spindle collapse and the defects in bipolar spindle formation. We demonstrate that Eg5 regulates spindle bipolarity and the maintenance of meiotic spindles in meiosis. Eg5 inhibition leads to monopolar spindles, spindle abnormalities and chromosome misalignment in cultured GC-2 spd cells. Furthermore, Eg5 inhibition results in the decrease of the spermatids and the abnormalities in mature sperms. Conclusions Our results have revealed an important role of kinesin-5 Eg5 in male meiosis and the maintenance of male fertility. We demonstrate that Eg5 is crucial for bipolar spindle assembly and chromosome alignment in dividing spermatocytes. Our data provide insights into the functions of Eg5 in meiotic spindle assembly of dividing spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122 Fujian China
| | - Ning Zhong
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Kai-Wei Yu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yu Xiao
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001 Fujian China.,4Fujian Provincial Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Yang Lin
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yue-Ling Li
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ming-Hui Lu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| |
Collapse
|
16
|
KSP siRNA/paclitaxel-loaded PEGylated cationic liposomes for overcoming resistance to KSP inhibitors: Synergistic antitumor effects in drug-resistant ovarian cancer. J Control Release 2020; 321:184-197. [PMID: 32035195 DOI: 10.1016/j.jconrel.2020.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Despite the promising anticancer effects of kinesin spindle protein (KSP) inhibition, functional plasticity of kinesins induced resistance against KSP inhibitors in a variety of cancers, leading to clinical failure. Additionally, paclitaxel is a widely used anticancer agent, but drug resistance has limited its use in the recurrent cancers. To overcome resistance against KSP inhibitors, we paired KSP inhibition with microtubule stabilization using KSP siRNA and paclitaxel. To enable temporal co-localization of both drugs in tumor cells in vivo, we exploited PEGylated cationic liposomes carrying both simultaneously. Drug synergism study shows that resistance against KSP inhibition can be suppressed by the action of microtubule-stabilizing paclitaxel, because microtubule stabilization prevents a different kinesin Kif15 from replacing all essential functions of KSP when KSP is inhibited. Our combination therapy showed more effective antiproliferative activity in vitro and in vivo than either paclitaxel or KSP siRNA alone. Ultimately, we could observe significantly improved therapeutic effects in the drug-resistant in vivo models, including cell line and patient-derived xenografts. Taken together, our combination therapy provides a potential anticancer strategy to overcome resistance against KSP inhibitors. Particularly, this strategy also provides an efficient approach to improve the therapeutic effects of paclitaxel in the drug-resistant cancers.
Collapse
|
17
|
Phragmoplast Orienting Kinesin 2 Is a Weak Motor Switching between Processive and Diffusive Modes. Biophys J 2019; 115:375-385. [PMID: 30021112 DOI: 10.1016/j.bpj.2018.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
Plant development and morphology relies on the accurate insertion of new cell walls during cytokinesis. However, how a plant cell correctly orients a new wall is poorly understood. Two kinesin class-12 members, phragmoplast orienting kinesin 1 (POK1) and POK2, are involved in the process, but how these molecular machines work is not known. Here, we used in vivo and single-molecule in vitro measurements to determine how Arabidopsis thaliana POK2 motors function mechanically. We found that POK2 is a very weak, on average plus-end-directed, moderately fast kinesin. Interestingly, POK2 switches between processive and diffusive modes characterized by an exclusive-state mean-squared-displacement analysis. Our results support a model that POK motors push against peripheral microtubules of the phragmoplast for its guidance. This pushing model may mechanically explain the conspicuous narrowing of the division site. Together, our findings provide mechanical insight into how active motors accurately position new cell walls in plants.
Collapse
|
18
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
19
|
Herrmann A, Livanos P, Lipka E, Gadeyne A, Hauser MT, Van Damme D, Müller S. Dual localized kinesin-12 POK2 plays multiple roles during cell division and interacts with MAP65-3. EMBO Rep 2018; 19:e46085. [PMID: 30002118 PMCID: PMC6123660 DOI: 10.15252/embr.201846085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Kinesins are versatile nano-machines that utilize variable non-motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin-12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre-selected cell plate fusion site at the cell cortex. Here, we report on the spatio-temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine-tuned by its carboxy-terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule-associated protein MAP65-3/PLEIADE, a well-established microtubule cross-linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.
Collapse
Affiliation(s)
- Arvid Herrmann
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Pantelis Livanos
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Elisabeth Lipka
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Astrid Gadeyne
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Sabine Müller
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
21
|
Ye AA, Verma V, Maresca TJ. NOD is a plus end-directed motor that binds EB1 via a new microtubule tip localization sequence. J Cell Biol 2018; 217:3007-3017. [PMID: 29899040 PMCID: PMC6122986 DOI: 10.1083/jcb.201708109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023] Open
Abstract
The mechanism by which the Drosophila chromokinesin NOD promotes chromosome congression is unknown. Ye et al. demonstrate that NOD generates force by two mechanisms: plus end–directed motility and microtubule plus-tip tracking via interaction with EB1 through a newly identified motif. Chromosome congression, the process of positioning chromosomes in the midspindle, promotes the stable transmission of the genome to daughter cells during cell division. Congression is typically facilitated by DNA-associated, microtubule (MT) plus end–directed motors called chromokinesins. The Drosophila melanogaster chromokinesin NOD contributes to congression, but the means by which it does so are unknown in large part because NOD has been classified as a nonmotile, orphan kinesin. It has been postulated that NOD promotes congression, not by conventional plus end–directed motility, but by harnessing polymerization forces by end-tracking on growing MT plus ends via a mechanism that is also uncertain. Here, for the first time, it is demonstrated that NOD possesses MT plus end–directed motility. Furthermore, NOD directly binds EB1 through unconventional EB1-interaction motifs that are similar to a newly characterized MT tip localization sequence. We propose NOD produces congression forces by MT plus end–directed motility and tip-tracking on polymerizing MT plus ends via association with EB1.
Collapse
Affiliation(s)
- Anna A Ye
- Biology Department, University of Massachusetts, Amherst, Amherst, MA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Amherst, MA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst, MA .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA
| |
Collapse
|
22
|
McHugh T, Drechsler H, McAinsh AD, Carter NJ, Cross RA. Kif15 functions as an active mechanical ratchet. Mol Biol Cell 2018; 29:1743-1752. [PMID: 29771628 PMCID: PMC6080711 DOI: 10.1091/mbc.e18-03-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kif15 is a kinesin-12 that contributes critically to bipolar spindle assembly in humans. Here we use force-ramp experiments in an optical trap to probe the mechanics of single Kif15 molecules under hindering or assisting loads and in a variety of nucleotide states. While unloaded Kif15 is established to be highly processive, we find that under hindering loads, Kif15 takes <∼10 steps. As hindering load is increased, Kif15 forestep:backstep ratio decreases exponentially, with stall occurring at 6 pN. In contrast, under assisting loads, Kif15 detaches readily and rapidly, even from its AMPPNP state. Kif15 mechanics thus depend markedly on the loading direction. Kif15 interacts with a binding partner, Tpx2, and we show that Tpx2 locks Kif15 to microtubules under both hindering and assisting loads. Overall, our data predict that Kif15 in the central spindle will act as a mechanical ratchet, supporting spindle extension but resisting spindle compression.
Collapse
Affiliation(s)
- Toni McHugh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Nicolas J Carter
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
23
|
Milic B, Chakraborty A, Han K, Bassik MC, Block SM. KIF15 nanomechanics and kinesin inhibitors, with implications for cancer chemotherapeutics. Proc Natl Acad Sci U S A 2018; 115:E4613-E4622. [PMID: 29703754 PMCID: PMC5960320 DOI: 10.1073/pnas.1801242115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eg5, a mitotic kinesin, has been a target for anticancer drug development. Clinical trials of small-molecule inhibitors of Eg5 have been stymied by the development of resistance, attributable to mitotic rescue by a different endogenous kinesin, KIF15. Compared with Eg5, relatively little is known about the properties of the KIF15 motor. Here, we employed single-molecule optical-trapping techniques to define the KIF15 mechanochemical cycle. We also studied the inhibitory effects of KIF15-IN-1, an uncharacterized, commercially available, small-molecule inhibitor, on KIF15 motility. To explore the complementary behaviors of KIF15 and Eg5, we also scored the effects of small-molecule inhibitors on admixtures of both motors, using both a microtubule (MT)-gliding assay and an assay for cancer cell viability. We found that (i) KIF15 motility differs significantly from Eg5; (ii) KIF15-IN-1 is a potent inhibitor of KIF15 motility; (iii) MT gliding powered by KIF15 and Eg5 only ceases when both motors are inhibited; and (iv) pairing KIF15-IN-1 with Eg5 inhibitors synergistically reduces cancer cell growth. Taken together, our results lend support to the notion that a combination drug therapy employing both inhibitors may be a viable strategy for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Bojan Milic
- Biophysics Program, Stanford University, Stanford, CA 94305
| | | | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305;
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
24
|
Chen H, Connell M, Mei L, Reid GSD, Maxwell CA. The nonmotor adaptor HMMR dampens Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation. Mol Biol Cell 2018; 29:786-796. [PMID: 29386294 PMCID: PMC5905292 DOI: 10.1091/mbc.e17-08-0531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The nonmotor adaptor protein HMMR maintains the kinetics and integrity of chromosome segregation by promoting TPX2-Eg5 complexes that dampen Eg5-mediated forces and support K-fiber stability, kinetochore–microtubule attachments, and inter-kinetochore tension. HMMR is needed to prevent the generation of aneuploid progeny cells. Mitotic spindle assembly and organization require forces generated by motor proteins. The activity of these motors is regulated by nonmotor adaptor proteins. However, there are limited studies reporting the functional importance of adaptors on the balance of motor forces and the promotion of faithful and timely cell division. Here we show that genomic deletion or small interfering RNA silencing of the nonmotor adaptor Hmmr/HMMR disturbs spindle microtubule organization and bipolar chromosome–kinetochore attachments with a consequent elevated occurrence of aneuploidy. Rescue experiments show a conserved motif in HMMR is required to generate interkinetochore tension and promote anaphase entry. This motif bears high homology with the kinesin Kif15 and is known to interact with TPX2, a spindle assembly factor. We find that HMMR is required to dampen kinesin Eg5-mediated forces through localizing TPX2 and promoting the formation of inhibitory TPX2-Eg5 complexes. In HMMR-silenced cells, K-fiber stability is reduced while the frequency of unattached chromosomes and the time needed for chromosome segregation are both increased. These defects can be alleviated in HMMR-silenced cells with chemical inhibition of Eg5 but not through the silencing of Kif15. Together, our findings indicate that HMMR balances Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation.
Collapse
Affiliation(s)
- Helen Chen
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lin Mei
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Gregor S D Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|