1
|
Collins BM, Cullen PJ. Separation of powers: A key feature underlying the neuroprotective role of Retromer in age-related neurodegenerative disease? Curr Opin Cell Biol 2025; 94:102516. [PMID: 40253888 DOI: 10.1016/j.ceb.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
The retromer complex was discovered in Saccharomyces cerevisiae as a multiprotein, pentameric assembly essential for recycling of integral membrane cargo proteins through the endosomal network [1,2]. We now understand how retromer is assembled, its membrane architecture, and how it selects proteins for recycling [3-6]. Conserved across eukaryotes, analyses have revealed retromer's role in organism development, and homeostasis and has linked retromer defects with age-related Alzheimer's disease and Parkinson's disease and other neurological disorders [3,5,7]. Indeed, stabilizing retromer function is now actively considered a therapeutic strategy [8]. Here, we reflect on its structural and functional evolution rather than overviewing retromer biology (see, e.g. [5,7]). Specifically, we clarify the organization of the human retromer to provide greater focus for future research, especially within the context of retromer's function in neuroprotection.
Collapse
Affiliation(s)
- Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Chen KE, Tillu VA, Gopaldass N, Chowdhury SR, Leneva N, Kovtun O, Ruan J, Guo Q, Ariotti N, Mayer A, Collins BM. Molecular basis for the assembly of the Vps5-Vps17 SNX-BAR proteins with Retromer. Nat Commun 2025; 16:3568. [PMID: 40234461 PMCID: PMC12000511 DOI: 10.1038/s41467-025-58846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Retromer mediates endosomal retrieval of transmembrane proteins in all eukaryotes and was first discovered in yeast in complex with the Vps5 and Vps17 sorting nexins (SNXs). Cryoelectron tomography (cryoET) studies of Retromer-Vps5 revealed a pseudo-helical coat on membrane tubules where dimers of the Vps26 subunit bind Vps5 membrane-proximal domains. However, the Vps29 subunit is also required for Vps5-Vps17 association despite being far from the membrane. Here, we show that Vps5 binds both Vps29 and Vps35 subunits through its unstructured N-terminal domain. A Pro-Leu (PL) motif in Vps5 binds Vps29 and is required for association with Retromer on membrane tubules in vitro, and for the proper recycling of the Vps10 cargo in Saccharomyces cerevisiae. CryoET of Retromer tubules with Vps5-Vps17 heterodimers show a similar architecture to the coat with Vps5-Vps5 homodimers, however, the spatial relationship between Retromer units is highly restricted, likely due to more limited orientations for docking. These results provide mechanistic insights into how Retromer and SNX-BAR association has evolved across species.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Natalya Leneva
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksiy Kovtun
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
3
|
Takeo Y, Crite M, Mehmood K, DiMaio D. γ-secretase facilitates retromer-mediated retrograde transport. J Cell Sci 2025; 138:JCS263538. [PMID: 39865938 PMCID: PMC11883284 DOI: 10.1242/jcs.263538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Retromer mediates retrograde transport of protein cargoes from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by the γ-secretase inhibitor XXI or by knockout of PS1 (also known as PSEN1), the catalytic subunit of γ-secretase. These treatments inhibited endosome-to-TGN trafficking of retromer-dependent retrograde cellular cargoes, divalent metal transporter 1 isoform II, cation-independent mannose-6-phosphate receptor and shiga toxin, whereas trafficking of retromer-independent cargoes, cholera toxin and a mutant CIMPR unable to bind retromer was not affected. Moreover, we found that γ-secretase associates with retromer cargoes even in the absence of retromer. XXI treatment and PS1 knockout did not inhibit the ability of retromer or γ-secretase to associate with cargo and did not affect the expression of retromer subunits or Rab7-GTP, which regulates retromer-cargo interaction. These results imply that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking of cellular transmembrane proteins.
Collapse
Affiliation(s)
- Yuka Takeo
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mac Crite
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kashif Mehmood
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Yin Y, Kan X, Miao X, Sun Y, Chen S, Qin T, Ding C, Peng D, Liu X. H5 subtype avian influenza virus induces Golgi apparatus stress response via TFE3 pathway to promote virus replication. PLoS Pathog 2024; 20:e1012748. [PMID: 39652582 PMCID: PMC11627363 DOI: 10.1371/journal.ppat.1012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
During infection, avian influenza virus (AIV) triggers endoplasmic reticulum (ER) stress, a well-established phenomenon in previous research. The Golgi apparatus, situated downstream of the ER and crucial for protein trafficking, may be impacted by AIV infection. However, it remains unclear whether this induces Golgi apparatus stress (GAS) and its implications for AIV replication. We investigated the morphological changes in the Golgi apparatus and identified GAS response pathways following infection with the H5 subtype AIV strain A/Mallard/Huadong/S/2005. The results showed that AIV infection induced significant swelling and fragmentation of the Golgi apparatus in A549 cells, indicating the presence of GAS. Among the analyzed GAS response pathways, TFE3 was significantly activated during AIV infection, while HSP47 was activated early in the infection process, and CREB3-ARF4 remained inactive. The blockade of the TFE3 pathway effectively inhibited AIV replication in A549 cells and attenuated AIV virulence in mice. Additionally, activation of the TFE3 pathway promoted endosome acidification and upregulated transcription levels of glycosylation enzymes, facilitating AIV replication. These findings highlight the crucial role of the TFE3 pathway in mediating GAS response during AIV infection, shedding light on its significance in viral replication.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Chan Ding
- Shanghai Jiaotong University School of Agriculture and Biology, Shanghai, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
5
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
6
|
Swaminathan U, Pucadyil TJ. Reconstituting membrane fission using a high content and throughput assay. Biochem Soc Trans 2024; 52:1449-1457. [PMID: 38747723 DOI: 10.1042/bst20231325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024]
Abstract
Protein-mediated membrane fission has been analyzed both in bulk and at the single event resolution. Studies on membrane fission in vitro using tethers have provided fundamental insights into the process but are low in throughput. In recent years, supported membrane template (SMrT) have emerged as a facile and convenient assay system for membrane fission. SMrTs provide useful information on intermediates in the pathway to fission and are therefore high in content. They are also high in throughput because numerous fission events can be monitored in a single experiment. This review discusses the utility of SMrTs in providing insights into fission pathways and its adaptation to annotate membrane fission functions in proteins.
Collapse
Affiliation(s)
- Uma Swaminathan
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
7
|
Takeo Y, Crite M, DiMaio D. γ-secretase facilitates retromer-mediated retrograde transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597932. [PMID: 38895404 PMCID: PMC11185792 DOI: 10.1101/2024.06.07.597932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The retromer complex mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a multisubunit protease that cleaves the transmembrane domain of its target proteins. Mutations in genes encoding subunits of retromer or γ-secretase can cause familial Alzheimer disease (AD) and other degenerative neurological diseases. It has been reported that retromer interacts with γ-secretase, but the consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by inhibition of γ-secretase activity or by genetic elimination of γ-secretase. γ-secretase inhibitor XXI and knockout of PS1, the catalytic subunit of γ-secretase, inhibit endosome to TGN trafficking of retromer-dependent retrograde cargos, divalent metal transporter 1 isoform II (DMT1-II), cation-independent mannose-6-phosphate receptor (CIMPR), and shiga toxin. Trafficking of retromer-independent cargos, such as cholera toxin and a CIMPR mutant that does not bind to retromer was not affected by γ-secretase inhibition. XXI treatment and PS1 KO inhibit interaction of γ-secretase with retromer but do not inhibit the association of cargo with retromer or with γ-secretase in intact cells. Similarly, these treatments do not affect the level of Rab7-GTP, which regulates retromer-cargo interaction. These results suggest that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking.
Collapse
Affiliation(s)
- Yuka Takeo
- Department of Genetics, Yale School of Medicine
| | - Mac Crite
- Department of Genetics, Yale School of Medicine
- Current affiliation: American University
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine
- Department of Molecular Biophysics and Biochemistry, Yale University
- Department of Therapeutic Radiology, Yale School of Medicine
- Yale Cancer Center, Yale School of Medicine
| |
Collapse
|
8
|
Füllbrunn N, Nicastro R, Mari M, Griffith J, Herrmann E, Rasche R, Borchers AC, Auffarth K, Kümmel D, Reggiori F, De Virgilio C, Langemeyer L, Ungermann C. The GTPase activating protein Gyp7 regulates Rab7/Ypt7 activity on late endosomes. J Cell Biol 2024; 223:e202305038. [PMID: 38536036 PMCID: PMC10978497 DOI: 10.1083/jcb.202305038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.
Collapse
Affiliation(s)
- Nadia Füllbrunn
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Janice Griffith
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - René Rasche
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
9
|
Díaz-Valdez J, Javier-Reyna R, Montaño S, Talamás-Lara D, Orozco E. EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of Entamoeba histolytica. FRONTIERS IN PARASITOLOGY 2024; 3:1356601. [PMID: 39817169 PMCID: PMC11732012 DOI: 10.3389/fpara.2024.1356601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 01/18/2025]
Abstract
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, Entamoeba histolytica, exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved. In this work, we studied the structure of EhVps35 the central member of the CSC retromeric subcomplex as it binds EhVps26 and EhVps29, the other two CSC members, allowing the position of the retromer in the membranes. We also studied the EhVps35 role in the recycling of virulence proteins, particularly those involved in phagocytosis. Confocal microscopy assays revealed that EhVps35 is located in the plasmatic and endosomal membranes and in the phagocytic cups and channels. In addition, it follows the target cell from the moment it is in contact with the trophozoites. Molecular docking analyses, immunoprecipitation assays, and microscopy studies revealed that EhVps35 interacts with the EhADH, Gal/GalNac lectin, and actin proteins. In addition, experimental evidence indicated that it recycles surface proteins, particularly EhADH and Gal/GalNac proteins, two molecules highly involved in virulence. Knockdown of the Ehvps35 gene induced a decrease in protein recycling, as well as impairments in the efficiency of adhesion and the rate of phagocytosis. The actin cytoskeleton was deeply affected by the Ehvps35 gene knockdown. In summary, our results revealed the participation of EhVps35 in protein recycling and phagocytosis. Furthermore, altogether, our results demonstrated the concert of finely regulated molecules, including EhVps35, EhADH, Gal/GalNac lectin, and actin, in the phagocytosis of E. histolytica.
Collapse
Affiliation(s)
- Joselin Díaz-Valdez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Bilógicas, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| |
Collapse
|
10
|
Healy MD, McNally KE, Butkovič R, Chilton M, Kato K, Sacharz J, McConville C, Moody ERR, Shaw S, Planelles-Herrero VJ, Yadav SKN, Ross J, Borucu U, Palmer CS, Chen KE, Croll TI, Hall RJ, Caruana NJ, Ghai R, Nguyen THD, Heesom KJ, Saitoh S, Berger I, Schaffitzel C, Williams TA, Stroud DA, Derivery E, Collins BM, Cullen PJ. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 2023; 186:2219-2237.e29. [PMID: 37172566 PMCID: PMC10187114 DOI: 10.1016/j.cell.2023.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Collapse
Affiliation(s)
- Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | - Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Joanna Sacharz
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Calum McConville
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Edmund R R Moody
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Shrestha Shaw
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | | | - Sathish K N Yadav
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Jennifer Ross
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Ufuk Borucu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kai-En Chen
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ryan J Hall
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Institute of Health and Sport (iHeS), Victoria University, Melbourne, VIC Australia
| | - Rajesh Ghai
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Thi H D Nguyen
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; Max Planck Bristol Centre for Minimal Biology, Department of Chemistry, University of Bristol, BS8 1TS Bristol, UK
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia
| | | | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK.
| |
Collapse
|
11
|
Gopaldass N, De Leo MG, Courtellemont T, Mercier V, Bissig C, Roux A, Mayer A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J 2023; 42:e112287. [PMID: 36644906 PMCID: PMC9841331 DOI: 10.15252/embj.2022112287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 01/17/2023] Open
Abstract
Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | | | | | - Vincent Mercier
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
| | - Christin Bissig
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | - Aurélien Roux
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
- Swiss National Centre for Competence in Research Program Chemical BiologyGenevaSwitzerland
| | - Andreas Mayer
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
12
|
Marquardt L, Taylor M, Kramer F, Schmitt K, Braus GH, Valerius O, Thumm M. Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy 2023; 19:278-295. [PMID: 35574911 PMCID: PMC9809942 DOI: 10.1080/15548627.2022.2072656] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast PROPPIN Atg18 folds as a β-propeller with two binding sites for phosphatidylinositol-3-phosphate (PtdIns3P) and PtdIns(3,5)P2 at its circumference. Membrane insertion of an amphipathic loop of Atg18 leads to membrane tubulation and fission. Atg18 has known functions at the PAS during macroautophagy, but the functional relevance of its endosomal and vacuolar pool is not well understood. Here we show in a proximity-dependent labeling approach and by co-immunoprecipitations that Atg18 interacts with Vps35, a central component of the retromer complex. The binding of Atg18 to Vps35 is competitive with the sorting nexin dimer Vps5 and Vps17. This suggests that Atg18 within the retromer can substitute for both the phosphoinositide binding and the membrane bending capabilities of these sorting nexins. Indeed, we found that Atg18-retromer is required for PtdIns(3,5)P2-dependent vacuolar fragmentation during hyperosmotic stress. The Atg18-retromer is further involved in the normal sorting of the integral membrane protein Atg9. However, PtdIns3P-dependent macroautophagy and the selective cytoplasm-to-vacuole targeting (Cvt) pathway are only partially affected by the Atg18-retromer. We expect that this is due to the plasticity of the different sorting pathways within the endovacuolar system.Abbreviations: BAR: bin/amphiphysin/Rvs; FOA: 5-fluoroorotic acid; PAS: phagophore assembly site; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology.
Collapse
Affiliation(s)
- Lisa Marquardt
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Matthew Taylor
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Florian Kramer
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany,CONTACT Michael Thumm ; Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073Goettingen, Germany
| |
Collapse
|
13
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
14
|
Courtellemont T, De Leo MG, Gopaldass N, Mayer A. CROP: a retromer-PROPPIN complex mediating membrane fission in the endo-lysosomal system. EMBO J 2022; 41:e109646. [PMID: 35466426 PMCID: PMC9108610 DOI: 10.15252/embj.2021109646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023] Open
Abstract
Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.
Collapse
Affiliation(s)
| | | | - Navin Gopaldass
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Andreas Mayer
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
15
|
Jin X, Zhao H, Zhou M, Zhang J, An T, Fu W, Li D, Cao X, Liu B. Retromer Complex and PI3K Complex II-Related Genes Mediate the Yeast ( Saccharomyces cerevisiae) Sodium Metabisulfite Resistance Response. Cells 2021; 10:cells10123512. [PMID: 34944020 PMCID: PMC8699849 DOI: 10.3390/cells10123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Sodium metabisulfite (Na2S2O5) is widely used as a preservative in the food and wine industry. However, it causes varying degrees of cellular damage to organisms. In order to improve our knowledge regarding its cyto-toxicity, a genome-wide screen using the yeast single deletion collection was performed. Additionally, a total of 162 Na2S2O5-sensitive strains and 16 Na2S2O5-tolerant strains were identified. Among the 162 Na2S2O5 tolerance-related genes, the retromer complex was the top enriched cellular component. Further analysis demonstrated that retromer complex deletion leads to increased sensitivity to Na2S2O5, and that Na2S2O5 can induce mislocalization of retromer complex proteins. Notably, phosphatidylinositol 3-monophosphate kinase (PI3K) complex II, which is important for retromer recruitment to the endosome, might be a potential regulator mediating retromer localization and the yeast Na2S2O5 tolerance response. Na2S2O5 can decrease the protein expressions of Vps34, which is the component of PI3K complex. Therefore, Na2S2O5-mediated retromer redistribution might be caused by the effects of decreased Vps34 expression levels. Moreover, both pharmaceutical inhibition of Vps34 functions and deletions of PI3K complex II-related genes affect cell tolerance to Na2S2O5. The results of our study provide a global picture of cellular components required for Na2S2O5 tolerance and advance our understanding concerning Na2S2O5-induced cytotoxicity effects.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
16
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
17
|
Feng Z, Inaba JI, Nagy PD. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. J Virol 2021; 95:e0107621. [PMID: 34406861 PMCID: PMC8513485 DOI: 10.1128/jvi.01076-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Martin-Sancho L, Tripathi S, Rodriguez-Frandsen A, Pache L, Sanchez-Aparicio M, McGregor MJ, Haas KM, Swaney DL, Nguyen TT, Mamede JI, Churas C, Pratt D, Rosenthal SB, Riva L, Nguyen C, Beltran-Raygoza N, Soonthornvacharin S, Wang G, Jimenez-Morales D, De Jesus PD, Moulton HM, Stein DA, Chang MW, Benner C, Ideker T, Albrecht RA, Hultquist JF, Krogan NJ, García-Sastre A, Chanda SK. Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nat Microbiol 2021; 6:1319-1333. [PMID: 34556855 PMCID: PMC9683089 DOI: 10.1038/s41564-021-00964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.
Collapse
Affiliation(s)
- Laura Martin-Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Infectious Disease Research, Microbiology & Cell Biology Department, Indian Institute of Science, Bangalore, India
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maite Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J McGregor
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Kelsey M Haas
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Thong T Nguyen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - João I Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Churas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dexter Pratt
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Courtney Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nish Beltran-Raygoza
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
20
|
Wu C, Lin Y, Zheng H, Abubakar YS, Peng M, Li J, Yu Z, Wang Z, Naqvi NI, Li G, Zhou J, Zheng W. The retromer CSC subcomplex is recruited by MoYpt7 and sequentially sorted by MoVps17 for effective conidiation and pathogenicity of the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2021; 22:284-298. [PMID: 33350057 PMCID: PMC7814966 DOI: 10.1111/mpp.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
In eukaryotic cells, Rab GTPases and the retromer complex are important regulators of intracellular protein transport. However, the mechanistic relationship between Rab GTPases and the retromer complex in relation to filamentous fungal development and pathogenesis is unknown. In this study, we used Magnaporthe oryzae, an important pathogen of rice and other cereals, as a model filamentous fungus to dissect this knowledge gap. Our data demonstrate that the core retromer subunit MoVps35 interacts with the Rab GTPase MoYpt7 and they colocalize to the endosome. Without MoYpt7, MoVps35 is mislocalized in the cytoplasm, indicating that MoYpt7 plays an important role in the recruitment of MoVps35. We further demonstrate that the expression of an inactive MoYpt7-DN (GDP-bound form) mutant in M. oryzae mimicks the phenotype defects of retromer cargo-sorting complex (CSC) null mutants and blocks the proper localization of MoVps35. In addition, our data establish that MoVps17, a member of the sorting nexin family, is situated at the endosome independent of retromer CSC but regulates the sorting function of MoVps35 after its recruitment to the endosomal membrane by MoYpt7. Taken together, these results provide insight into the precise mechanism of retromer CSC recruitment to the endosome by MoYpt7 and subsequent sorting by MoVps17 for efficient conidiation and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Congxian Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yahong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huawei Zheng
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | | | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jingjing Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi Yu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, and the Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Guangpu Li
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jie Zhou
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenhui Zheng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Temasek Life Sciences Laboratory, and the Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
21
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Dehnen L, Janz M, Verma JK, Psathaki OE, Langemeyer L, Fröhlich F, Heinisch JJ, Meyer H, Ungermann C, Paululat A. A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J Cell Sci 2020; 133:jcs247080. [PMID: 32499409 DOI: 10.1242/jcs.247080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bulli-containing trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1.
Collapse
Affiliation(s)
- Lena Dehnen
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Maren Janz
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jitender Kumar Verma
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility Osnabrück (iBiOs), University of Osnabrück, 49076 Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology and Chemistry, Molecular Membrane Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Biology and Chemistry, Genetics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Heiko Meyer
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
23
|
Siddiqui AA, Saha D, Iqbal MS, Saha SJ, Sarkar S, Banerjee C, Nag S, Mazumder S, De R, Pramanik S, Debsharma S, Bandyopadhyay U. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochim Biophys Acta Gen Subj 2020; 1864:129656. [PMID: 32512169 DOI: 10.1016/j.bbagen.2020.129656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intracellular protein trafficking is crucial for survival of cell and proper functioning of the organelles; however, these pathways are not well studied in the malaria parasite. Its unique cellular architecture and organellar composition raise an interesting question to investigate. METHODS The interaction of Plasmodium falciparum Rab7 (PfRab7) with vacuolar protein sorting-associated protein 26 (PfVPS26) of retromer complex was shown by coimmunoprecipitation (co-IP). Confocal microscopy was used to show the localization of the complex in the parasite with respect to different organelles. Further chemical tools were employed to explore the role of digestive vacuole (DV) in retromer trafficking in parasite and GTPase activity of PfRab7 was examined. RESULTS PfRab7 was found to be interacting with retromer complex that assembled mostly near DV and the Golgi in trophozoites. Chemical disruption of DV by chloroquine (CQ) led to its disassembly that was further validated by using compound 5f, a heme polymerization inhibitor in the DV. PfRab7 exhibited Mg2+ dependent weak GTPase activity that was inhibited by a specific Rab7 GTPase inhibitor, CID 1067700, which prevented the assembly of retromer complex in P. falciparum and inhibited its growth suggesting the role of GTPase activity of PfRab7 in retromer assembly. CONCLUSION Retromer complex was found to be interacting with PfRab7 and the functional integrity of the DV was found to be important for retromer assembly in P. falciparum. GENERAL SIGNIFICANCE This study explores the retromer trafficking in P. falciparum and describes amechanism to validate DV targeting antiplasmodial molecules.
Collapse
Affiliation(s)
- Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
24
|
Mammalian Retromer Is an Adaptable Scaffold for Cargo Sorting from Endosomes. Structure 2020; 28:393-405.e4. [PMID: 32027819 PMCID: PMC7145723 DOI: 10.1016/j.str.2020.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/16/2020] [Indexed: 01/21/2023]
Abstract
Metazoan retromer (VPS26/VPS35/VPS29) associates with sorting nexins on endosomal tubules to sort proteins to the trans-Golgi network or plasma membrane. Mechanisms of metazoan retromer assembly remain undefined. We combine single-particle cryoelectron microscopy with biophysical methods to uncover multiple oligomer structures. 2D class averages reveal mammalian heterotrimers; dimers of trimers; tetramers of trimers; and flat chains. These species are further supported by biophysical solution studies. We provide reconstructions of all species, including key sub-structures (∼5 Å resolution). Local resolution variation suggests that heterotrimers and dimers adopt multiple conformations. Our structures identify a flexible, highly conserved electrostatic dimeric interface formed by VPS35 subunits. We generate structure-based mutants to disrupt this interface in vitro. Equivalent mutations in yeast demonstrate a mild cargo-sorting defect. Our data suggest the metazoan retromer is an adaptable and plastic scaffold that accommodates interactions with different sorting nexins to sort multiple cargoes from endosomes their final destinations.
Collapse
|
25
|
|
26
|
Purushothaman LK, Ungermann C. Cargo induces retromer-mediated membrane remodeling on membranes. Mol Biol Cell 2018; 29:2709-2719. [PMID: 30188774 PMCID: PMC6249844 DOI: 10.1091/mbc.e18-06-0339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endosomes serve as a central sorting station of lipids and proteins that arrive via vesicular carrier from the plasma membrane and the Golgi complex. At the endosome, retromer complexes sort selected receptors and membrane proteins into tubules or vesicles that bud off the endosome. The mature endosome finally fuses with the lysosome. Retromer complexes consist of a cargo selection complex (CSC) and a membrane remodeling part (sorting nexin [SNX]-Bin/amphiphysin/Rvs [BAR], or Snx3 in yeast) and different assemblies of retromer mediate recycling of different cargoes. Due to this complexity, the exact order of events that results in carrier formation is not yet understood. Here, we reconstituted this process on giant unilamellar vesicles together with purified retromer complexes from yeast and selected cargoes. Our data reveal that the membrane remodeling activity of both Snx3 and the SNX-BAR complex is strongly reduced at low concentrations, which can be reactivated by CSC. At even lower concentrations, these complexes still associate with membranes, but only remodel membranes in the presence of their specific cargoes. Our data thus favor a simple model, where cargo functions as a specific trigger of retromer-mediated sorting on endosomes.
Collapse
Affiliation(s)
- Latha Kallur Purushothaman
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
27
|
Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 2018; 561:561-564. [PMID: 30224749 PMCID: PMC6173284 DOI: 10.1038/s41586-018-0526-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/08/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.
Collapse
|
28
|
Gómez-Sánchez R, Rose J, Guimarães R, Mari M, Papinski D, Rieter E, Geerts WJ, Hardenberg R, Kraft C, Ungermann C, Reggiori F. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol 2018; 217:2743-2763. [PMID: 29848619 PMCID: PMC6080931 DOI: 10.1083/jcb.201710116] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 11/22/2022] Open
Abstract
The autophagy-related (Atg) proteins play a key role in the formation of autophagosomes, the hallmark of autophagy. The function of the cluster composed by Atg2, Atg18, and transmembrane Atg9 is completely unknown despite their importance in autophagy. In this study, we provide insights into the molecular role of these proteins by identifying and characterizing Atg2 point mutants impaired in Atg9 binding. We show that Atg2 associates to autophagosomal membranes through lipid binding and independently from Atg9. Its interaction with Atg9, however, is key for Atg2 confinement to the growing phagophore extremities and subsequent association of Atg18. Assembly of the Atg9-Atg2-Atg18 complex is important to establish phagophore-endoplasmic reticulum (ER) contact sites. In turn, disruption of the Atg2-Atg9 interaction leads to an aberrant topological distribution of both Atg2 and ER contact sites on forming phagophores, which severely impairs autophagy. Altogether, our data shed light in the interrelationship between Atg9, Atg2, and Atg18 and highlight the possible functional relevance of the phagophore-ER contact sites in phagophore expansion.
Collapse
Affiliation(s)
- Rubén Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jaqueline Rose
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Rodrigo Guimarães
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Papinski
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ester Rieter
- Department of Cell Biology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Willie J Geerts
- Biomolecular Imaging, Bijvoet Center, Utrecht University, Utrecht, Netherlands
| | - Ralph Hardenberg
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Claudine Kraft
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Seaman MNJ, Mukadam AS, Breusegem SY. Inhibition of TBC1D5 activates Rab7a and can enhance the function of the retromer cargo-selective complex. J Cell Sci 2018; 131:jcs.217398. [PMID: 29777037 PMCID: PMC6031384 DOI: 10.1242/jcs.217398] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
The retromer complex is a vital component of the endosomal protein sorting machinery necessary for sorting into both the endosome-to-Golgi retrieval pathway and also the endosome-to-cell-surface recycling pathway. Retromer mediates cargo selection through a trimeric complex comprising VPS35, VPS29 and VPS26, which is recruited to endosomes by binding to Rab7a and Snx3. Retromer function is linked to two distinct neurodegenerative diseases, Parkinson's disease and Alzheimer's disease and modulating retromer function has been proposed as an avenue to explore for a putative therapy in these conditions. We hypothesised that activating Rab7a to promote the recruitment of retromer to endosomes could positively modulate its activity. Here, we show that inhibition of the GTPase activating protein TBC1D5 can enhance Rab7a activation and lead to a gain of function for retromer. Highlighted Article: Enhancement of retromer complex function through inhibition of TBC1D5, a Rab GTPase-activating protein for Rab7a, leads to a gain of function for retromer-mediated endosomal sorting.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrookes Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Aamir S Mukadam
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrookes Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Sophia Y Breusegem
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrookes Biomedical Campus, Cambridge, CB2 0XY, UK
| |
Collapse
|
30
|
Gohlke S, Heine D, Schmitz HP, Merzendorfer H. Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker's yeast chitin synthase III complex. Fungal Genet Biol 2018; 117:11-20. [PMID: 29763674 DOI: 10.1016/j.fgb.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Chitin is mainly formed by the chitin synthase III complex (CSIII) in yeast cells. This complex is considered to be composed of the catalytic subunit Chs3 and the regulatory subunit Chs4, both of which are phosphoproteins and transported to the plasma membrane by different trafficking routes. During cytokinesis, Chs3 associates with Chs4 and other proteins at the septin ring, which results in an active CSIII complex. In this study, we focused on the role of Chs4 as a regulatory subunit of the CSIII complex. We analyzed the dynamic localization and interaction of Chs3 and Chs4 during cell division, and found that both proteins transiently co-localize and physically interact only during bud formation and later in a period during septum formation and cytokinesis. To identify unknown binding partners of Chs4, we conducted different screening approaches, which yielded several novel candidates of Chs4-binding proteins including the septin-associated kinase Gin4. Our further studies confirmed this interaction and provided first evidence that Chs4 phosphorylation is partially dependent on Gin4, which is required for proper localization of Chs4 at the bud neck.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany; Institute of Biology, University of Siegen, 57068 Siegen, Germany
| | - Daniela Heine
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | - Hans-Peter Schmitz
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | | |
Collapse
|
31
|
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol 2018; 26:769-780. [PMID: 29703496 DOI: 10.1016/j.tim.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens have developed elegant mechanisms to modulate host endosomal trafficking. The highly conserved retromer pathway has emerged as an important target of viruses and intravacuolar bacteria. Some pathogens require retromer function to survive. For others, retromer activity restricts intracellular growth; these pathogens must disrupt retromer function to survive. In this review, we discuss recent paradigm changes to the current model for retromer assembly and cargo selection. We highlight how the study of pathogen effectors has contributed to these fundamental insights, with a special focus on the biology and structure of two recently described bacterial effectors, Chlamydia trachomatis IncE and Legionella pneumophila RidL. These two pathogens employ distinct strategies to target retromer components and overcome restriction of intracellular growth imposed by retromer.
Collapse
Affiliation(s)
- Cherilyn Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Miller HE, Larson CL, Heinzen RA. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth. PLoS Pathog 2018; 14:e1007005. [PMID: 29668757 PMCID: PMC5927470 DOI: 10.1371/journal.ppat.1007005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV) and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1) and cationic-independent mannose-6-phosphate receptor (CI-M6PR), respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.
Collapse
Affiliation(s)
- Heather E. Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
33
|
Makaraci P, Kim K. trans-Golgi network-bound cargo traffic. Eur J Cell Biol 2018; 97:137-149. [PMID: 29398202 DOI: 10.1016/j.ejcb.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Cargo following the retrograde trafficking are sorted at endosomes to be targeted the trans-Golgi network (TGN), a central receiving organelle. Though molecular requirements and their interaction networks have been somewhat established, the complete understanding of the intricate nature of their action mechanisms in every step of the retrograde traffic pathway remains unachieved. This review focuses on elucidating known functions of key regulators, including scission factors at the endosome and tethering/fusion mediators at the receiving dock, TGN, as well as a diverse range of cargo.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA.
| |
Collapse
|
34
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
36
|
Molecular mechanism for the subversion of the retromer coat by the Legionella effector RidL. Proc Natl Acad Sci U S A 2017; 114:E11151-E11160. [PMID: 29229824 PMCID: PMC5748213 DOI: 10.1073/pnas.1715361115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deciphering microbial virulence mechanisms is of fundamental importance for the treatment of infectious diseases. Legionella pneumophila, the causative agent of Legionnaires’ pneumonia, hijacks a variety of host cell factors during intracellular growth. Herein, we uncovered the molecular mechanism by which the L. pneumophila effector RidL targets the host VPS29, a scaffolding protein of endosome-associated sorting machineries. Using X-ray crystallography, we determined the structure of RidL, both alone and in complex with retromer. We found that RidL uses a hairpin loop similar to that present in cellular ligands to interact with retromer. This sophisticated molecular mimicry allows RidL to outcompete cellular ligands for retromer binding, explaining how L. pneumophila utilizes the endosomal sorting machinery to facilitate targeting of effector proteins. Microbial pathogens employ sophisticated virulence strategies to cause infections in humans. The intracellular pathogen Legionella pneumophila encodes RidL to hijack the host scaffold protein VPS29, a component of retromer and retriever complexes critical for endosomal cargo recycling. Here, we determined the crystal structure of L. pneumophila RidL in complex with the human VPS29–VPS35 retromer subcomplex. A hairpin loop protruding from RidL inserts into a conserved pocket on VPS29 that is also used by cellular ligands, such as Tre-2/Bub2/Cdc16 domain family member 5 (TBC1D5) and VPS9-ankyrin repeat protein for VPS29 binding. Consistent with the idea of molecular mimicry in protein interactions, RidL outcompeted TBC1D5 for binding to VPS29. Furthermore, the interaction of RidL with retromer did not interfere with retromer dimerization but was essential for association of RidL with retromer-coated vacuolar and tubular endosomes. Our work thus provides structural and mechanistic evidence into how RidL is targeted to endosomal membranes.
Collapse
|
37
|
Abubakar YS, Zheng W, Olsson S, Zhou J. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Int J Mol Sci 2017; 18:ijms18081601. [PMID: 28757549 PMCID: PMC5577995 DOI: 10.3390/ijms18081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|