1
|
Wong T, Kang R, Yun K. The multi-faceted immune modulatory role of S100A4 in cancer and chronic inflammatory disease. Front Immunol 2025; 16:1525567. [PMID: 40078995 PMCID: PMC11897520 DOI: 10.3389/fimmu.2025.1525567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
S100A4 is a Ca2+-binding protein involved in multiple chronic inflammatory and neoplastic conditions. This review focuses on recent advances in the understanding of S100A4 function in immune cells, comparing and contrasting S100A4 regulation of immune responses in cancer and chronic inflammatory diseases. We provide evidence that S100A4 regulation of immune cell function has a profound role in promoting the pathogenesis of cancer and pro-inflammatory conditions. Finally, we discuss relevant future directions to target S100A4 therapeutically in different disease states.
Collapse
Affiliation(s)
- Thomas Wong
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Reece Kang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
2
|
Jingjing H, Tongqian W, Shirong Y, Lan M, Jing L, Shihui M, Haijian Y, Fang Y. S100A4 promotes experimental autoimmune encephalomyelitis by impacting microglial inflammation through TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 142:112849. [PMID: 39241524 DOI: 10.1016/j.intimp.2024.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerating autoimmune disease with no clinical cure currently. The calcium-binding protein S100A4 has been demonstrated to exert regulatory roles in inflammatory disorders including MS. However, the precise mechanisms by which S100A4 regulates neuroinflammation in MS remains unknown. To investigate the regulatory effect of S100A4 on microglial inflammation and its impact on neuroinflammation, the mouse-derived microglia cell line BV2 cells were infected with lentivirus to knockout S100A4 for in vitro studies. Wild-type (WT) and S100A4-/- mice were induced to develop experimental autoimmune encephalomyelitis (EAE), an animal model of MS, for in vivo investigation. Results indicated that the frequencies of microglia in the spinal cord and brain and the expression of S100A4 in these tissues varied kinetically along with the progression of the disease in mice with EAE. S100A4-/- mice presented ameliorated clinical scores of EAE and exhibited less severe EAE signs, including inflammatory cell infiltration in the spinal cord and brain and demyelination of the spinal cord. Moreover, these mice demonstrated overall reduced levels of inflammatory cytokines in the spinal cord and brain. Compromised systematic inflammatory responses including circulating cytokines and frequencies of immune cells in the spleen were also observed in these mice. In addition, both exogenous and endogenous S100A4 could promote the microglial inflammation, affect the polarization of microglia and enhance inflamed microglia-mediated apoptosis of neuronal cells through TLR4/NF-κB signaling pathway. Thus, S100A4 may participate in the regulation of neuroinflammation at least partly through regulating the inflammation of microglia.
Collapse
Affiliation(s)
- He Jingjing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Clinical Laboratory, Guizhou Hospital, the First Affiliated Hospital of Sun Yat-sen University, Guiyang 550004, China
| | - Wu Tongqian
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Shirong
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Ma Lan
- School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Li Jing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Mo Shihui
- School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Yan Haijian
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
3
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
4
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Saito-Sasaki N, Sawada Y. S100 Proteins in the Pathogenesis of Psoriasis and Atopic Dermatitis. Diagnostics (Basel) 2023; 13:3167. [PMID: 37891988 PMCID: PMC10606049 DOI: 10.3390/diagnostics13203167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The skin, the outermost layer of the human body, is exposed to various external stimuli that cause inflammatory skin reactions. These external stimulants trigger external epithelial cell damage and the release of intracellular substances. Following cellular damage or death, intracellular molecules are released that enhance tissue inflammation. As an important substance released from damaged cells, the S100 protein is a low-molecular-weight acidic protein with two calcium-binding sites and EF-hand motif domains. S100 proteins are widely present in systemic organs and interact with other proteins. Recent studies revealed the involvement of S100 in cutaneous inflammatory disorders, psoriasis, and atopic dermatitis. This review provides detailed information on the interactions among various S100 proteins in inflammatory diseases.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
6
|
Zhang G, Feng Y, Wang M, Liu X. ATL1 inhibits the proliferation and invasion of trophoblast cells via inhibition of the mTOR signaling pathway. J Biochem Mol Toxicol 2023; 37:e23237. [PMID: 36193555 DOI: 10.1002/jbt.23237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Pre-eclampsia (PE) is a major cause of hypertension in maternal and fetal. Atlastin-1 (ATL1), one regulator of endoplasmic reticulum (ER) morphology, participates in tubular ER formation and protein synthesis. The objective of this study is to investigate the role and molecular mechanism of ATL1 in PE. GEO databases showed that ATL1 was upregulated in PE patients. Our data also found that ATL1 was highly expressed in PE placental tissues. The cell viability, proliferation, migration, and invasion of HTR-8/SVneo cells increased/decreased after the downregulation/upregulation of ATL1. The mTOR pathway is the downstream pathway of ATL1. The levels of p-p70S6K and p-mTOR were increased/decreased after the downregulation/upregulation of ATL1. Moreover, rapamycin, an inhibitor of mTOR pathway, reversed the promotive effect of siATL1 on proliferation, migration, and invasion in HTR-8/SVneo cells. In conclusion, ATL1 inhibits the proliferation and invasion of trophoblast cells via the inhibition of the mTOR signaling pathway in HTR-8/SVneo cells.
Collapse
Affiliation(s)
- Guanli Zhang
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Yan Feng
- Department of Obstetrics, Liaocheng Dongchangfu Maternal and Child Health Hospital, Liaocheng, Shandong, China
| | - Min Wang
- Department of Obstetrics, Liaocheng Dongchangfu Maternal and Child Health Hospital, Liaocheng, Shandong, China
| | - Xin Liu
- Department of Obstetrics, Liaocheng Dongchangfu Maternal and Child Health Hospital, Liaocheng, Shandong, China
| |
Collapse
|
7
|
LaFavers KA, Hage CA, Gaur V, Micanovic R, Hato T, Khan S, Winfree S, Doshi S, Moorthi RN, Twigg H, Wu XR, Dagher PC, Srour EF, El-Achkar TM. The kidney protects against sepsis by producing systemic uromodulin. Am J Physiol Renal Physiol 2022; 323:F212-F226. [PMID: 35759740 PMCID: PMC9359648 DOI: 10.1152/ajprenal.00146.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.
Collapse
Affiliation(s)
- Kaice A LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi A Hage
- Division of Pulmonary Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Varun Gaur
- Southern Indiana Nephrology and Hypertension, Columbus, Indiana
| | - Radmila Micanovic
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Takashi Hato
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shehnaz Khan
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simit Doshi
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ranjani N Moorthi
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Homer Twigg
- Division of Pulmonary Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University, and Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Pierre C Dagher
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Edward F Srour
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tarek M El-Achkar
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
8
|
Abdelfattah N, Kumar P, Wang C, Leu JS, Flynn WF, Gao R, Baskin DS, Pichumani K, Ijare OB, Wood SL, Powell SZ, Haviland DL, Parker Kerrigan BC, Lang FF, Prabhu SS, Huntoon KM, Jiang W, Kim BYS, George J, Yun K. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun 2022; 13:767. [PMID: 35140215 PMCID: PMC8828877 DOI: 10.1038/s41467-022-28372-y] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer.
Collapse
Affiliation(s)
- Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Caiyi Wang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jia-Shiun Leu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ruli Gao
- Center for Bioinformatics and Computational Biology. Houston Methodist Research Institute Houston, Houston, TX, USA
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Kumar Pichumani
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Omkar B Ijare
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
| | - Stephanie L Wood
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
| | - Suzanne Z Powell
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David L Haviland
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin M Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Zhang Y, Yang X, Zhu XL, Bai H, Wang ZZ, Zhang JJ, Hao CY, Duan HB. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging (Albany NY) 2021; 13:15459-15478. [PMID: 34148033 PMCID: PMC8221329 DOI: 10.18632/aging.203103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the better prognosis given by surgical resection and chemotherapy in low-grade glioma (LGG), progressive transformation is still a huge concern. In this case, the S100A gene family, being capable of regulating inflammatory responses, can promote tumor development. METHODS The analysis was carried out via ONCOMINE, GEPIA, cBioPortal, String, GeneMANIA, WebGestalt, LinkedOmics, TIMER, CGGA, R 4.0.2 and immunohistochemistry. RESULTS S100A2, S100A6, S100A10, S100A11, and S100A16 were up-regulated and S100A1 and S100A13 were down-regulated in LGG compared to normal tissues. S100A3, S100A4, S100A8, and S100A9 expression was up-regulated during the progression of glioma grade. In addition, genetic variation of the S100A family was high in LGG, and the S100A family genes mostly function through IL-17 signaling pathway, S100 binding protein, and inflammatory responses. The TIMER database also revealed a relationship between gene expression and immune cell infiltration. High expression of S100A2, S100A3, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 was significantly associated with poor prognosis in LGG patients. S100A family genes S100A2, S100A3, S100A6, S100A10, and S100A11 may be prognosis-related genes in LGG, and were significantly associated with IDH mutation and 1p19q codeletion. The immunohistochemical staining results also confirmed that S100A2, S100A3, S100A6, S100A10, and S100A11 expression was upregulated in LGG. CONCLUSION The S100A family plays a vital role in LGG pathogenesis, presumably facilitating LGG progression via modulating inflammatory state and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hao Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Zhuang-Zhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang 033000, Shanxi, P.R. China
| |
Collapse
|
10
|
Leerach N, Munesue S, Harashima A, Kimura K, Oshima Y, Kawano S, Tanaka M, Niimura A, Sakulsak N, Yamamoto H, Hori O, Yamamoto Y. RAGE signaling antagonist suppresses mouse macrophage foam cell formation. Biochem Biophys Res Commun 2021; 555:74-80. [PMID: 33813279 DOI: 10.1016/j.bbrc.2021.03.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
The engagement of the receptor for advanced glycation end-products (receptor for AGEs, RAGE) with diverse ligands could elicit chronic vascular inflammation, such as atherosclerosis. Binding of cytoplasmic tail RAGE (ctRAGE) to diaphanous-related formin 1 (Diaph1) is known to yield RAGE intracellular signal transduction and subsequent cellular responses. However, the effectiveness of an inhibitor of the ctRAGE/Diaph1 interaction in attenuating the development of atherosclerosis is unclear. In this study, using macrophages from Ager+/+ and Ager-/- mice, we validated the effects of an inhibitor on AGEs-RAGE-induced foam cell formation. The inhibitor significantly suppressed AGEs-RAGE-evoked Rac1 activity, cell invasion, and uptake of oxidized low-density lipoprotein, as well as AGEs-induced NF-κB activation and upregulation of proinflammatory gene expression. Moreover, expression of Il-10, an anti-inflammatory gene, was restored by this antagonist. These findings suggest that the RAGE-Diaph1 inhibitor could be a potential therapeutic drug against RAGE-related diseases, such as chronic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Nontaphat Leerach
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Shuhei Kawano
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Mariko Tanaka
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Akane Niimura
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan; Komatsu University, Komatsu, 923-0921, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| |
Collapse
|
11
|
S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells 2021; 10:cells10040798. [PMID: 33918416 PMCID: PMC8066633 DOI: 10.3390/cells10040798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
S100A4 is a member of the large family of S100 proteins, exerting a broad range of intracellular and extracellular functions that vary upon different cellular contexts. While S100A4 has long been implicated mainly in tumorigenesis and metastatization, mounting evidence shows that S100A4 is a key player in promoting pro-inflammatory phenotypes and organ pro-fibrotic pathways in the liver, kidney, lung, heart, tendons, and synovial tissues. Regarding the nervous system, there is still limited information concerning S100A4 presence and function. It was observed that S100A4 exerts physiological roles contributing to neurogenesis, cellular motility and chemotaxis, cell differentiation, and cell-to cell communication. Furthermore, S100A4 is likely to participate to numerous pathological processes of the nervous system by affecting the functions of astrocytes, microglia, infiltrating cells and neurons and thereby modulating inflammation and immune reactions, fibrosis as well as neuronal plasticity and survival. This review summarizes the current state of knowledge concerning the localization, deregulation, and possible functions of S100A4 in the physiology of the central and peripheral nervous system. Furthermore, we highlight S100A4 as a gene involved in the pathogenesis of neurological disorders such as brain tumors, neurodegenerative diseases, and acute injuries.
Collapse
|
12
|
Cano‐Ballesteros S, Palmquist‐Gomes P, Marín‐Sedeño E, Guadix JA, Pérez‐Pomares JM. Fsp1 cardiac embryonic expression delineates atrioventricular endocardial cushion, coronary venous and lymphatic valve development. J Anat 2021; 238:508-514. [PMID: 32920869 PMCID: PMC7812130 DOI: 10.1111/joa.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/03/2023] Open
Abstract
Fsp1 (a.k.a S100A4 or Metastatin) is an intracellular and secreted protein widely regarded as a fibroblast marker. Recent studies have nonetheless shown that Fsp1 is also expressed by other cell types, including small subsets of endothelial cells. Since no detailed and systematic description of Fsp1 spatio-temporal expression pattern in cardiac vascular cells is available in the literature, we have used a transgenic murine line (Fsp1-GFP) to study Fsp1 expression in the developing and postnatal cardiac vasculature and endocardium. Our work shows that Fsp1 is expressed in the endocardium and mesenchyme of atrioventricular valve primordia, as well as in some coronary venous and lymphatic endothelial cells. Fsp1 expression in cardiac venous and lymphatic endothelium is progressively restricted to the leaflets of cardiac venous and lymphatic valves. Our results suggest that Fsp1 could play a role in the development of atrioventricular valves and participate in the patterning and morphogenesis of cardiac venous and lymphatic vessel valves.
Collapse
Affiliation(s)
- Sara Cano‐Ballesteros
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Paul Palmquist‐Gomes
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Ernesto Marín‐Sedeño
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Juan Antonio Guadix
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - José María Pérez‐Pomares
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| |
Collapse
|
13
|
Maddala R, Gao J, Mathias RT, Lewis TR, Arshavsky VY, Levine A, Backer JM, Bresnick AR, Rao PV. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep 2021; 11:2203. [PMID: 33500475 PMCID: PMC7838418 DOI: 10.1038/s41598-021-81611-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
S100A4, a member of the S100 family of multifunctional calcium-binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in differentiating fiber cells of the ocular lens and that S100A4 (-/-) knockout mice develop late-onset cortical cataracts. Transcriptome profiling of lenses from S100A4 (-/-) mice revealed a robust increase in the expression of multiple photoreceptor- and Müller glia-specific genes, as well as the olfactory sensory neuron-specific gene, S100A5. This aberrant transcriptional profile is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of differentially expressed genes in S100A4 (-/-) lenses identified Crx and Nrl transcription factors as the most significant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high-density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this finding, we further documented that S100A4 (-/-) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, our findings suggest that S100A4 suppresses the expression of retinal genes during lens differentiation plausibly via a mechanism involving changes in histone methylation.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adriana Levine
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 2021; 134:jcs.248815. [PMID: 33262310 DOI: 10.1242/jcs.248815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Juri Habicht
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaonan Zhang
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edith Emmings
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Rouillé E, Bilbault H, Levin C, Lezmi S. Characterization of an interdigitating dendritic cell hyperplasia case in a lymph node of a control C57BL/6 mouse. J Toxicol Pathol 2020; 34:101-106. [PMID: 33627950 PMCID: PMC7890166 DOI: 10.1293/tox.2020-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Interdigitating dendritic cell (IDC) hyperplasia
is considered a benign spontaneous condition occasionally observed in the lymph nodes of
mice. It has been rarely reported and, to the best of our knowledge, it has never been
characterized using immunohistochemistry. The present work describes a spontaneous IDC
hyperplasia case in a lymph node of a 16-week-old control female C57BL/6 mouse.
Microscopically, the lymph node architecture was completely effaced by the proliferation
of eosinophilic spindle cells with an abundant pale cytoplasm forming trabecule admixed
lymphocyte infiltrates. The spindle cell population was positive for F4/80, partially
positive for S100 calcium-binding protein A4 (S100A4), slightly positive for E-cadherin,
and negative for α-Smooth muscle actin (SMA) and cytokeratin. Lymphocytes were positive
for CD3, CD4, CD20 and negative for CD8. Spindle cells were considered to be originated
from the myeloid lineage, based on the immunohistochemistry (IHC) results, but their
precise origin remains unclear (IDC or macrophages); even if macrophage origin is most
likely based on F4/80 positivity, this remains to be further clarified using other
markers.
Collapse
Affiliation(s)
- Elodie Rouillé
- Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, 101 route de Gachet, 44307 Nantes, France
| | - Héloïse Bilbault
- Investigative Pathology and Safety Biomarkers, Ipsen Innovation, R&D, 5 avenue du Canada, 91940 Les Ulis, France
| | - Clément Levin
- Investigative Pathology and Safety Biomarkers, Ipsen Innovation, R&D, 5 avenue du Canada, 91940 Les Ulis, France
| | - Stéphane Lezmi
- Investigative Pathology and Safety Biomarkers, Ipsen Innovation, R&D, 5 avenue du Canada, 91940 Les Ulis, France
| |
Collapse
|
16
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
17
|
Serrano A, Apolloni S, Rossi S, Lattante S, Sabatelli M, Peric M, Andjus P, Michetti F, Carrì MT, Cozzolino M, D'Ambrosi N. The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101261. [PMID: 31623154 PMCID: PMC6829868 DOI: 10.3390/cells8101261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
S100A4, belonging to a large multifunctional S100 protein family, is a Ca2+-binding protein with a significant role in stimulating the motility of cancer and immune cells, as well as in promoting pro-inflammatory properties in different cell types. In the CNS, there is limited information concerning S100A4 presence and function. In this study, we analyzed the expression of S100A4 and the effect of the S100A4 transcriptional inhibitor niclosamide in murine activated primary microglia. We found that S100A4 was strongly up-regulated in reactive microglia and that niclosamide prevented NADPH oxidase 2, mTOR (mammalian target of rapamycin), and NF-κB (nuclear factor-kappa B) increase, cytoskeletal rearrangements, migration, and phagocytosis. Furthermore, we found that S100A4 was significantly up-regulated in astrocytes and microglia in the spinal cord of a transgenic rat SOD1-G93A model of amyotrophic lateral sclerosis. Finally, we demonstrated the increased expression of S100A4 also in fibroblasts derived from amyotrophic lateral sclerosis (ALS) patients carrying SOD1 pathogenic variants. These results ascribe S100A4 as a marker of microglial reactivity, suggesting the contribution of S100A4-regulated pathways to neuroinflammation, and identify niclosamide as a possible drug in the control and attenuation of reactive phenotypes of microglia, thus opening the way to further investigation for a new application in neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessia Serrano
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Savina Apolloni
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Simona Rossi
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | - Serena Lattante
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Mario Sabatelli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Centro Clinico NEMO, 00168 Rome, Italy.
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Mina Peric
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| | - Pavle Andjus
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maria Teresa Carrì
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
18
|
Xue B, Hou G, Zhang G, Huang J, Li L, Nan Y, Mu Y, Wang L, Zhang L, Han X, Ren X, Zhao Q, Wu C, Wang J, Zhou EM. MYH9 Aggregation Induced by Direct Interaction With PRRSV GP5 Ectodomain Facilitates Viral Internalization by Permissive Cells. Front Microbiol 2019; 10:2313. [PMID: 31649651 PMCID: PMC6794372 DOI: 10.3389/fmicb.2019.02313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Prevention and control of infection by porcine reproductive and respiratory syndrome virus (PRRSV) remains a challenge, due to our limited understanding of the PRRSV invasion mechanism. Our previous study has shown that PRRSV glycoprotein GP5 interacts with MYH9 C-terminal domain protein (PRA). Here we defined that the first ectodomain of GP5 (GP5-ecto-1) directly interacted with PRA and this interaction triggered PRA and endogenous MYH9 to form filament assembly. More importantly, MYH9 filament assembly was also formed in GP5-ecto-1-transfected MARC-145 cells. Notably, PRRSV infection of MARC-145 cells and porcine alveolar macrophages also induced endogenous MYH9 aggregation and polymerization that were required for subsequent PRRSV internalization. Moreover, overexpression of S100A4, a MYH9-specific disassembly inducer, in MARC-145 cells significantly resulted in diminished MYH9 aggregation and marked inhibition of subsequent virion internalization and infection by both PRRSV-1 and PRRSV-2 isolates. The collective results of this work reveal a novel molecular mechanism employed by MYH9 that helps PRRSV gain entry into permissive cells.
Collapse
Affiliation(s)
- Biyun Xue
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Guixi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Liangliang Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yang Mu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ximeng Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaolei Ren
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chunyan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
19
|
Rafiq NBM, Grenci G, Lim CK, Kozlov MM, Jones GE, Viasnoff V, Bershadsky AD. Forces and constraints controlling podosome assembly and disassembly. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180228. [PMID: 31431172 DOI: 10.1098/rstb.2018.0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Cheng Kai Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,CNRS UMI 3639, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Lech M, Guess J, Duffner J, Oyamada J, Shimizu C, Hoshino S, Farutin V, Bulik DA, Gutierrez B, Sarvaiya H, Kapoor B, Koppes L, Saldova R, Stockmann H, Albrecht S, McManus C, Rudd PM, Kaundinya GV, Manning AM, Bosques CJ, Kahn AM, Daniels LB, Gordon JB, Tremoulet AH, Capila I, Gunay NS, Ling LE, Burns JC. Circulating Markers of Inflammation Persist in Children and Adults With Giant Aneurysms After Kawasaki Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002433. [DOI: 10.1161/circgen.118.002433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients.
Methods:
Molecular profiling was conducted using mass spectrometry–based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers.
Results:
A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood.
Conclusions:
Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.
Collapse
Affiliation(s)
- Miroslaw Lech
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jamey Guess
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jay Duffner
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jun Oyamada
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Chisato Shimizu
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Shinsuke Hoshino
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Victor Farutin
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Dorota A. Bulik
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Bryan Gutierrez
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Hetal Sarvaiya
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Bulbul Kapoor
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Laura Koppes
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Radka Saldova
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Henning Stockmann
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Simone Albrecht
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Ciara McManus
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Ganesh V. Kaundinya
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Anthony M. Manning
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Carlos J. Bosques
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Andrew M. Kahn
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Lori B. Daniels
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | | | - Adriana H. Tremoulet
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
- Rady Children’s Hospital–San Diego (A.H.T., J.C.B.)
| | - Ishan Capila
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Nur Sibel Gunay
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Leona E. Ling
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jane C. Burns
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
- Rady Children’s Hospital–San Diego (A.H.T., J.C.B.)
| |
Collapse
|