1
|
Nakhaei-Rad S, Pudewell S, Mirzaiebadizi A, Nouri K, Reichert D, Kordes C, Häussinger D, Ahmadian MR. From Quiescence to Activation: The Reciprocal Regulation of Ras and Rho Signaling in Hepatic Stellate Cells. Cells 2025; 14:674. [PMID: 40358198 PMCID: PMC12071349 DOI: 10.3390/cells14090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Chronic liver diseases are marked by persistent inflammation and can evolve into liver fibrosis, cirrhosis, and hepatocellular carcinoma. In an affected liver, hepatic stellate cells (HSCs) transition from a quiescent to an activated state and adopt a myofibroblast-like cell phenotype. While these activated cells play a role in supporting liver regeneration, they can also have detrimental effects on liver function as the disease progresses to fibrosis and cirrhosis. These findings highlight the dynamic switching between different signaling pathways involving Ras, Rho GTPases, and Notch signaling. Notably, two specific members of the Ras and Rho GTPases, Eras and Rnd3, are predominantly expressed in quiescent HSCs, while Mras and Rhoc are more abundant in their activated forms. In addition, this study highlights the critical role of cytosolic Notch1 in quiescent HSCs and Rock in activated HSCs. We hypothesize that distinct yet interdependent intracellular signaling networks regulate HSC fate decisions in two key ways: by maintaining HSC quiescence and homeostasis and by facilitating HSC activation, thereby influencing processes such as proliferation, transdifferentiation, and mesenchymal transition. The proposed signaling model, combined with specific methodological tools for maintaining HSCs in a quiescent state, will deepen our understanding of the mechanisms underlying chronic liver disease and may also pave the way for innovative therapies. These therapies could include small molecule drugs targeting Ras- and Rho-dependent pathways.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.P.); (A.M.); (K.N.)
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University, Mashhad 9177948974, Iran
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.P.); (A.M.); (K.N.)
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.P.); (A.M.); (K.N.)
| | - Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.P.); (A.M.); (K.N.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Doreen Reichert
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Claus Kordes
- Institute of Stem Cell Research and Regenerative Medicine, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | | | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.P.); (A.M.); (K.N.)
| |
Collapse
|
2
|
Kaczmarczyk B, de la Calle-Fabregat C, Conde A, Duarte AC, Mena-Vazquez N, Fernandez-Nebro A, Triguero-Martinez A, Castañeda S, Dos-Santos Sobrin R, Mera-Varela A, Lopez-Pedrera C, Escudero-Contreras A, Vela-Casasempere P, Molina M, Narvaez J, Retuerto-Guerrero M, Pablos JL, Sarmiento-Monroy JC, Sanmarti R, Gomez-Carrera L, Bonilla G, Remuzgo-Martinez S, Gonzalez-Gay MA, Leiro-Fernandez V, Perez-Gomez N, Vadillo-Font C, Abasolo L, Casafont-Sole I, Mateo-Soria L, Castillo-Gonzalez AC, Marras C, Perez-Pampin E, Ballestar E, Gonzalez A. DNA methylome biomarkers of rheumatoid arthritis-associated interstitial lung disease reflecting lung fibrosis pathways, an exploratory case-control study. Sci Rep 2025; 15:15123. [PMID: 40301499 PMCID: PMC12041357 DOI: 10.1038/s41598-025-99755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Rheumatoid Arthritis-associated Interstitial Lung Disease (RA-ILD) significantly reduces life quality and survival, necessitating improvements in its understanding and clinical management. We addressed these goals using DNA methylation analysis, which has not been done in RA-ILD samples, by comparing 32 RA patients with ILD diagnosed less than one year before (cases) and 32 matched RA patients without ILD (controls). This analysis identified 6679 differentially methylated positions (DMPs) with Δβ ≥ 2% and FDR < 0.05, and 576 differentially methylated regions in RA-ILD. Some DMPs were near mucin, collagen, and telomere maintenance genes. Also, the most notably enriched gene set (up to padj = 1.9 × 10-38) included genes overexpressed in fibrosis by monocytes and alveolar macrophages. Other significantly enriched gene sets, known to be dysregulated in fibrosis, included the mitotic spindle and the Rho GTPases. Additionally, analysis of transcription factor binding sites around DMPs showed unique enrichment near the liver X receptor element (LXRE), which is associated with fibrosis in multiple tissues. These results were consistent and unaffected by stricter significance thresholds. They indicated that differential DNA methylation may serve as blood biomarkers for RA-ILD including some related to lung fibrosis pathways.
Collapse
Affiliation(s)
- Bartosz Kaczmarczyk
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Adrian Conde
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | - Ana Catarina Duarte
- Rheumatology Department, Unidade Local de Saúde de Almada-Seixal - Hospital Garcia de Orta, Almada, Portugal
| | - Natalia Mena-Vazquez
- Department of Rheumatology, University Regional Hospital of Malaga (HRUM). Institute for Biomedical Research in Malaga (IBIMA), Malaga University, Málaga, Spain
| | - Antonio Fernandez-Nebro
- Department of Rheumatology, University Regional Hospital of Malaga (HRUM). Institute for Biomedical Research in Malaga (IBIMA), Malaga University, Málaga, Spain
| | - Ana Triguero-Martinez
- Rheumatology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-Princesa), Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-Princesa), Madrid, Spain
| | - Raquel Dos-Santos Sobrin
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | - Antonio Mera-Varela
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
- Department of Medicine. Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | | | - Maria Molina
- Pneumology Department, Hospital Universitario Belvitge, Barcelona, Spain
| | - Javier Narvaez
- Rheumatology Department, Hospital Universitario Belvitge, Barcelona, Spain
| | - Miriam Retuerto-Guerrero
- Rheumatology Department, Hospital 12 de Octubre and Universidad Complutense de Madrid, Madrid, Spain
| | - Jose L Pablos
- Rheumatology Department, Hospital 12 de Octubre and Universidad Complutense de Madrid, Madrid, Spain
| | | | - Raimon Sanmarti
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Luis Gomez-Carrera
- Pneumology Department, Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Gema Bonilla
- Rheumatology Department, Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Sara Remuzgo-Martinez
- Rheumatology Department, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Miguel Angel Gonzalez-Gay
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
- Rheumatology Division, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Virginia Leiro-Fernandez
- Pneumology Department, NeumoVigo I+i Research Group, Complejo Hospitalario Universitario de Vigo, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO. CIBERES. ISCIII, Vigo, Spain
| | | | - Cristina Vadillo-Font
- Rheumatology Department, Hospital Clínico San Carlos - Instituto Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Lydia Abasolo
- Rheumatology Department, Hospital Clínico San Carlos - Instituto Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ivette Casafont-Sole
- Rheumatology Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Lourdes Mateo-Soria
- Rheumatology Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | | | - Carlos Marras
- Rheumatology Unit, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Eva Perez-Pampin
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
- Department of Medicine. Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Antonio Gonzalez
- Experimental and Observational Rheumatology and Rheumatology Unit, Instituto Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Cao Y, Sheng S, Zhong Y, Shang J, Jin C, Tan Q, Ping F, Huang W, Liu Y, Li Y. FLRT3 Overexpression Attenuates Ischemia-Reperfusion Induced Vascular Hyperpermeability and Lung Injury Through RND3. Lung 2025; 203:39. [PMID: 40047936 PMCID: PMC11885377 DOI: 10.1007/s00408-025-00791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE Pulmonary ischemia/reperfusion injury (IRI) causes endothelial barrier dysfunction and increased vascular permeability. Fibronectin leucine-rich transmembrane protein-3 (FLRT3) is known to regulate endothelial cell function, but its role in pulmonary IRI remains unexplored. METHODS We established both a mouse lung I/R model and a hypoxia/reoxygenation (H/R) cell culture model using human pulmonary microvascular endothelial cells (HPMECs). The effects of FLRT3 manipulation were assessed through lentiviral-mediated overexpression and knockdown approaches. Lung injury was evaluated by histological analysis, immunohistochemistry, and lung injury scoring. Endothelial barrier function was assessed using transmission electron microscopy, Evans blue extravasation, and endothelial permeability assays. RESULTS FLRT3 expression was predominantly localized in pulmonary endothelial cells and was downregulated following I/R injury. Lentiviral vectors overexpressing FLRT3 (LV-FLRT3, 1 × 109 TU/ml) via tail vein injection before I/R surgery. FLRT3 overexpression effectively protected against lung injury by maintaining vascular integrity and reducing edema formation in I/R-challenged mice. In H/R-treated HPMECs, we identified that FLRT3 protein underwent autophagic-lysosomal degradation. Mechanistically, FLRT3 preserved endothelial barrier function through interaction with Rho family GTPase 3 (RND3), which prevented RhoA pathway-mediated cytoskeletal disruption. FLRT3 overexpression in HPMECs promoted cell migration, maintained cytoskeletal structure, and reduced endothelial hyperpermeability under H/R conditions. Importantly, RND3 knockdown in vivo significantly attenuated FLRT3's protective effects against I/R injury, as evidenced by increased lung injury scores, vascular permeability, and RhoA pathway activation. CONCLUSIONS Our findings reveal FLRT3, a critical regulator of endothelial barrier function during IRI through the RND3-RhoA pathway, is a potential therapeutic target for pulmonary IRI.
Collapse
Affiliation(s)
- Yongmei Cao
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Shiyang Sheng
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Yong Zhong
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Cui Jin
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Qin Tan
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Feng Ping
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Yongchao Liu
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China.
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
4
|
Cao Y, Wang S, Ma J, Long M, Ma X, Yang X, Ji Y, Tang X, Liu J, Lin C, Yang Y, Du P. Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells. Cell Death Dis 2024; 15:931. [PMID: 39719443 DOI: 10.1038/s41419-024-07321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored. Immunohistochemistry (IHC) and Western Blot (WB) analyses were used to assess the expression levels of SIRT7/EZH2 and RND3 in bladder cancer tissues, normal ureteral epithelial cells, and bladder cancer cell lines. Furthermore, the impact of various treatments on of UMUC3 cell proliferation and CDDP sensitivity was assessed using CCK-8 assays, plate cloning assays, and flow cytometry analysis. Additionally, the levels of H3K18ac and H3K27me3 at the promoter region of the RND3 gene, the binding abilities of SIRT7 and EZH2, and the succinylation level of the EZH2 protein were examined using ChIP-qPCR assays, CO-IP assays, and IP assays, respectively. Moreover, in vivo experiments were conducted using a bladder cancer mouse model created by subcutaneously injecting UMUC3 cells into Balb/c nude mice. According to the results, SIRT7 correlated with the sensitivity of bladder cancer cells to both the platinum-based chemotherapy and CDDP. Specifically, SIRT7 could bind to the RND3 promoter, downregulating H3K18ac and RND3, ultimately leading to an increased CDDP sensitivity in UMUC3 cells. Furthermore, EZH2 siRNA could decrease H3K27me3 levels in the RND3 promoter, upregulating RND3. Overall, in the promoter region of the RND3 gene, SIRT7 upregulated H3K27me3 and EZH2 downregulated H3K18ac, leading to a decline in RND3 expression and CDDP sensitivity in bladder cancer cells. Additionally, SIRT7 reduced the succinylation of the EZH2 protein resulting in an EZH2-mediated RND3 downregulation. Therefore, targeting SIRT7 and EZH2 could be a viable approach to enhancing CDDP efficacy in bladder cancer treatment.
Collapse
Affiliation(s)
- Yudong Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shuo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinchao Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mengping Long
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiuli Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiao Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yongpeng Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingxing Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jia Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chen Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yong Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Peng Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
5
|
Milewska G, Ponikwicka-Tyszko D, Bernaczyk P, Lupu O, Szamatowicz M, Sztachelska M, Pilaszewicz-Puza A, Koda M, Bielawski T, Zbucka-Kretowska M, Pawelczyk A, Tomaszewski J, Li X, Huhtaniemi I, Wolczynski S, Rahman NA. Functional evidence for two distinct mechanisms of action of progesterone and selective progesterone receptor modulator on uterine leiomyomas. Fertil Steril 2024; 122:341-351. [PMID: 38431184 DOI: 10.1016/j.fertnstert.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE To study the specific mechanisms through which progesterone and selective progesterone receptor modulators impact the growth, synthesis, and accumulation of the extracellular matrix in uterine leiomyomas. DESIGN Laboratory study. SETTING Academic Research Institutions. PATIENTS (S) This study involved reproductive-age women diagnosed with infertility associated uterine leiomyomas who underwent myomectomy either after selective progesterone receptor modulator ulipristal acetate (UA) treatment or without any pharmacological pretreatment. Control samples included healthy myometrium tissue (n = 100). Specimens were obtained from the Department of Reproduction and Gynecological Endocrinology and Biobank, Medical University of Bialystok, Poland. INTERVENTIONS Daily (5 mg/d) UA treated for 2 months (n = 100) and untreated (n = 150) patients with uterine leiomyomas or normal healthy myometrium (n = 100) tissue samples immediately after surgery were collected for transcriptional analysis and assessments. MAIN OUTCOME MEASURES Progesterone-induced activation of the signaling pathways related to uterine leiomyomas extracellular matrix synthesis, deposition, and growth, as well as the expression profile of progesterone receptors in uterine leiomyomas, were assessed. RESULTS The results indicated that progesterone activated the transforming growth factor-β and SMAD3 signaling pathways and promoted proliferation, growth, and extracellular matrix remodeling in uterine leiomyomas by up-regulating SMAD3, transforming growth factor-β (TGF-β) receptor type 1 and II, Ras homolog A, vascular endothelial growth factor, or increasing the fibrosis-related gene collagen, type I, ɑ-1, and procollagen, type I, ɑ-1 production. In contrast, UA had inhibitory effects on these processes. The study also showed that both nuclear and membrane progesterone receptors play distinct roles in uterine leiomyoma pathobiology. CONCLUSIONS We showed that both nuclear and membrane progesterone receptors were relevant in the treatment of uterine leiomyomas, especially when combined with selective progesterone receptor modulators. Novel therapeutic approaches combining selective progesterone receptor modulators with or without direct and indirect extracellular matrix targeting through selected specifically TGF-β and SMAD3 (SMAD3, TGF-β receptor types 1 and II, Ras homolog A, vascular endothelial growth factor, collagen, type I, ɑ-1) signaling pathways could therefore be a treatment option for uterine leiomyomas.
Collapse
Affiliation(s)
- Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Michal Szamatowicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Bialystok, Poland
| | - Tomasz Bielawski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Adam Pawelczyk
- Division of General and Transplant Surgery, Department of General, Vascular and Transplant Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Tomaszewski
- Tomaszewski Medical Center of Obstetrics and Gynecology Bialystok, Poland
| | - Xiangdong Li
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland; State Key Laboratory of Agrobiotechnology, China Agricultural University Bejing, People's Republic of China
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom; Institute of Biomedicine, University of Turku, Finland
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Nafis A Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland; Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
6
|
Chiou WC, Huang GJ, Chang TY, Hsia TL, Yu HY, Lo JM, Fu PK, Huang C. Ovatodiolide inhibits SARS-CoV-2 replication and ameliorates pulmonary fibrosis through suppression of the TGF-β/TβRs signaling pathway. Biomed Pharmacother 2023; 161:114481. [PMID: 36906971 PMCID: PMC9998303 DOI: 10.1016/j.biopha.2023.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to pose threats to public health. The clinical manifestations of lung pathology in COVID-19 patients include sustained inflammation and pulmonary fibrosis. The macrocyclic diterpenoid ovatodiolide (OVA) has been reported to have anti-inflammatory, anti-cancer, anti-allergic, and analgesic activities. Here, we investigated the pharmacological mechanism of OVA in suppressing SARS-CoV-2 infection and pulmonary fibrosis in vitro and in vivo. Our results revealed that OVA was an effective SARS-CoV-2 3CLpro inhibitor and showed remarkable inhibitory activity against SARS-CoV-2 infection. On the other hand, OVA ameliorated pulmonary fibrosis in bleomycin (BLM)-induced mice, reducing inflammatory cell infiltration and collagen deposition in the lung. OVA decreased the levels of pulmonary hydroxyproline and myeloperoxidase, as well as lung and serum TNF-ɑ, IL-1β, IL-6, and TGF-β in BLM-induced pulmonary fibrotic mice. Meanwhile, OVA reduced the migration and fibroblast-to-myofibroblast conversion of TGF-β1-induced fibrotic human lung fibroblasts. Consistently, OVA downregulated TGF-β/TβRs signaling. In computational analysis, OVA resembles the chemical structures of the kinase inhibitors TβRI and TβRII and was shown to interact with the key pharmacophores and putative ATP-binding domains of TβRI and TβRII, showing the potential of OVA as an inhibitor of TβRI and TβRII kinase. In conclusion, the dual function of OVA highlights its potential for not only fighting SARS-CoV-2 infection but also managing injury-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung City 413305, Taiwan.
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237010, Taiwan.
| | - Tzu-Lan Hsia
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| | - Hao-You Yu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| | - Jir-Mehng Lo
- Industrial Technology Research Institute, Biomedical Technology and Device Research Laboratories, Hsinchu City 310401, Taiwan.
| | - Pin-Kuei Fu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City 402010, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407219, Taiwan; Integrated Care Center of Interstitial Lung Disease, Taichung Veterans General Hospital, Taichung City 407219, Taiwan; College of Human Science and Social Innovation, Hungkuang University, Taichung City 433304, Taiwan.
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| |
Collapse
|
7
|
Dai L, Chen X, Zhang H, Zeng H, Yin Z, Ye Z, Wei Y. RND3 Transcriptionally Regulated by FOXM1 Inhibits the Migration and Inflammation of Synovial Fibroblasts in Rheumatoid Arthritis Through the Rho/ROCK Pathway. J Interferon Cytokine Res 2022; 42:279-289. [PMID: 35699481 DOI: 10.1089/jir.2021.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease. Rho family GTPase 3 (RND3) has been reported to play an important role in inflammatory diseases. In this study, the expression of RND3 in RA was analyzed by gene chips. After RND3 was overexpressed, cell counting kit-8 assay was to detect the viability of fibroblast-like synovial cells (RA-FLSs). Transwell assays were to appraise the migratory and invasive capacities of RA-FLSs. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis were to estimate inflammatory response. In addition, MMP3 and MMP9 levels were also tested by ELISA analysis. After forkhead box M1 (FOXM1) was overexpressed, RND3 expression was detected by Western blot. The transcriptional relationship between FOXM1 and RND3 was predicted by HumanTFDB and JASPAR databases. Luciferase reporter and chromatin immunoprecipitation assays verified the binding ability of FOXM1 and RND3. The role of FOXM1/RND3 axis in RA was detected again by functional experiments. Western blot detected the expression of Rho/ROCK pathway-related proteins. RND3 expression was downregulated in RA. Overexpression of RND3 reduced the proliferation, migration, invasion, and inflammation of RA-FLSs. RND3 was inhibited by FOXM1 transcription, and upregulated FOXM1 reduced the inhibitory effect of RND3 overexpression on cell growth and inflammation, which might be associated with the Rho/ROCK pathway. RND3 transcriptionally regulated by FOXM1 inhibited the migration and inflammation of RA-FLSs in RA through the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Liping Dai
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xinpeng Chen
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huichang Zhang
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yazhi Wei
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
8
|
Wu Z, Jia M, Zhao W, Huang X, Yang X, Chen D, Qiaolongbatu X, Li X, Wu J, Qian F, Lou Y, Fan G. Schisandrol A, the main active ingredient of Schisandrae Chinensis Fructus, inhibits pulmonary fibrosis through suppression of the TGF-β signaling pathway as revealed by UPLC-Q-TOF/MS, network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115031. [PMID: 35091014 DOI: 10.1016/j.jep.2022.115031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis decoction derived from the book of Waitai Miyao (Tao Wang, Tang dynasty) is often used in the treatment of idiopathic pulmonary fibrosis (IPF), which is included in the Grand Ceremony of Chinese formulae (Huairen Peng, 1994). Schisandrae Chinensis Fructus (Sch) is one of the most important herbs in this formula. According to the "Shennong's Herbal Classicherbal" of the Han Dynasty, Sch has sour taste, warm nature, which has the effect of tonifying qi and curing cough. In addition, according to the "Compendium of Materia Medica" of the Ming Dynasty, Sch is used to treat cough and asthma, which has the effect of moistening the lung and tonifying the kidney. However, the active ingredients of Sch absorption into the plasma and its pharmacological mechanism of treatment for IPF still remained unclear. AIM OF THE STUDY Our research aimed at identifying the absorbed active ingredients and metabolized of Sch in rat plasma and the mechanism of anti-IPF based on serum pharmacochemistry. MATERIALS AND METHODS First, the rats were divided into control group and Sch group. Sch sample was orally administrated to the rats for seven days. The blood samples were drawn into an Eppendorf tube after the last dosing. The ultrahigh performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) was applied to identify the absorption components and metabolites of Sch in rat plasma. Second, the network pharmacology combined with molecular docking analysis was further investigated to illuminate its potential mechanism of treatment for IPF by the biological targets regulating related pathways. Finally, the mechanism of action was verified by experimental in vitro and in vivo. RESULTS A total of 78 compounds, consist of 13 prototype lignans and 65 metabolites (including isomers) were identified. Network pharmacology study and molecular docking analysis indicated that schisandrol A (L1) play an anti-fibrosis role by regulating the TGF-β signaling pathway. Experimental in vitro and in vivo verified that the schisandrol A could inhibiting pulmonary fibrosis through TGF-β signaling pathway. The effect and mechanism of schisandrol A inhibiting pulmonary fibrosis were reported for the first time. CONCLUSIONS In this study, the absorption active ingredients of Sch in rat plasma were combined with the network pharmacology investigation and experimental in vitro and in vivo to elucidate its biological mechanism of treatment for IPF. The results provided a theoretical support for understanding the bioactive compounds and the pharmacological mechanism of Sch.
Collapse
Affiliation(s)
- Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xucong Huang
- School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Xinyi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dongxin Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xiaojing Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Jiaqi Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Feng Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
9
|
Velázquez-Enríquez JM, Ramírez-Hernández AA, Navarro LMS, Reyes-Avendaño I, González-García K, Jiménez-Martínez C, Castro-Sánchez L, Sánchez-Chino XM, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Proteomic Analysis Reveals Differential Expression Profiles in Idiopathic Pulmonary Fibrosis Cell Lines. Int J Mol Sci 2022; 23:ijms23095032. [PMID: 35563422 PMCID: PMC9105114 DOI: 10.3390/ijms23095032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | | | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Luis Castro-Sánchez
- Conacyt-Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima 28045, Mexico;
| | - Xariss Miryam Sánchez-Chino
- Catedra-Conacyt, Departamento de Salud El Colegio de La Frontera Sur, Unidad Villahermosa, Tabasco 86280, Mexico;
| | | | - Rafael Baltiérrez-Hoyos
- Conacyt-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
- Correspondence:
| |
Collapse
|
10
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Shen H, Zhang N, Liu Y, Yang X, He Y, Li Q, Shen X, Zhu Y, Yang Y. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front Pharmacol 2022; 12:805535. [PMID: 35069217 PMCID: PMC8766975 DOI: 10.3389/fphar.2021.805535] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a highly contagious respiratory disease, which mainly affects the lungs. Critically ill patients are easily complicated by cytokine storms, acute respiratory distress syndrome (ARDS), and respiratory failure, which seriously threaten their lives. Pulmonary fibrosis (PF) is a common interstitial lung disease, and its pathogenesis may involve the participation of a variety of immune cells and inflammatory factors. Current studies have shown that patients with COVID-19 may be complicated by pulmonary fibrosis, and patients with pulmonary fibrosis may also be at higher risk of contracting COVID-19 than healthy people. Pulmonary fibrosis is an important risk factor leading to the aggravation of COVID-19 disease. COVID-19 complicated by cytokine storm and ARDS mechanism pathways are similar to the pathogenesis of pulmonary fibrosis. The potential interaction between pulmonary fibrosis and COVID-19 can cause acute exacerbation of the patient's condition, but the potential mechanism between the two has not been fully elucidated. Most of the drug treatment programs for COVID-19-related pulmonary fibrosis are currently formulated about the relevant guidelines for idiopathic pulmonary fibrosis (IPF), and there is no clear drug treatment program recommendation. This article aims to summarize the relevant mechanism pathways of COVID-19 and pulmonary fibrosis, explore the interrelationships and possible mechanisms, and discuss the value and risks of existing and potential COVID-19-related pulmonary fibrosis treatment drugs, to provide reference for anti-fibrosis treatment for patients.
Collapse
Affiliation(s)
- Hao Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nu Zhang
- Department of Pharmacy, People’s Hospital of Fushun County, Fushun, China
| | - Yuqing Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan He
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112395. [PMID: 34579914 DOI: 10.1016/j.msec.2021.112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E. coli and S. aureus. It shows high adhesion ability to various substrate materials, implying a simpler method to the wound obtained by self-fixing rather than suturing. More important, it can produce strong contractility under the irradiation of near-infrared light (NIR), exerting a centripetal force that helps accelerate wound healing. Thus, the hydrogel containing a high concentration PDA@Ag5GO1 irradiated by NIR can completely repair the wound defect (1.0 × 1.0 cm2) within 15 days, the wound healing rate can reach 100%, which was far higher than other groups. Taken together, the new hydrogel with excellent antibacterial, high adhesion and strong contractility will subvert the traditional treatment methods on wound defect, extending its new application range in wound dressing.
Collapse
|
13
|
Proteomic Analysis Reveals Key Proteins in Extracellular Vesicles Cargo Associated with Idiopathic Pulmonary Fibrosis In Vitro. Biomedicines 2021; 9:biomedicines9081058. [PMID: 34440261 PMCID: PMC8394197 DOI: 10.3390/biomedicines9081058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, and highly fatal disease. It is characterized by the increased activation of both fibroblast and myofibroblast that results in excessive extracellular matrix (ECM) deposition. Extracellular vesicles (EVs) have been described as key mediators of intercellular communication in various pathologies. However, the role of EVs in the development of IPF remains poorly understood. This study aimed to characterize the differentially expressed proteins contained within EVs cargo derived from the fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2) isolated from lungs bearing IPF as compared to those derived from the fibroblast cell lines CCD8Lu (NL-1) and CCD19Lu (NL-2) isolated from healthy donors. Isolated EVs were subjected to label-free quantitative proteomic analysis by LC-MS/MS, and as a result, 331 proteins were identified. Differentially expressed proteins were obtained after the pairwise comparison, including all experimental groups. A total of 86 differentially expressed proteins were identified in either one or more comparison groups. Of note, proteins involved in fibrogenic processes, such as tenascin-c (TNC), insulin-like-growth-factor-binding protein 7 (IGFBP7), fibrillin-1 (FBN1), alpha-2 collagen chain (I) (COL1A2), alpha-1 collagen chain (I) (COL1A1), and lysyl oxidase homolog 1 (LOXL1), were identified in EVs cargo isolated from IPF cell lines. Additionally, KEGG pathway enrichment analysis revealed that differentially expressed proteins participate in focal adhesion, PI3K-Akt, and ECM–receptor interaction signaling pathways. In conclusion, our findings reveal that proteins contained within EVs cargo might play key roles during IPF pathogenesis.
Collapse
|
14
|
Li Q, Dibus M, Casey A, Yee CSK, Vargas SO, Luo S, Rosen SM, Madden JA, Genetti CA, Brabek J, Brownstein CA, Kazerounian S, Raby BA, Schmitz-Abe K, Kennedy JC, Fishman MP, Mullen MP, Taylor JM, Rosel D, Agrawal PB. A homozygous stop-gain variant in ARHGAP42 is associated with childhood interstitial lung disease, systemic hypertension, and immunological findings. PLoS Genet 2021; 17:e1009639. [PMID: 34232960 PMCID: PMC8289122 DOI: 10.1371/journal.pgen.1009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michal Dibus
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christina S. K. Yee
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha M. Rosen
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jill A. Madden
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Casie A. Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan Brabek
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John C. Kennedy
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha P. Fishman
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan M. Taylor
- Dept. Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Crisan-Dabija R, Pavel CA, Popa IV, Tarus A, Burlacu A. "A Chain Only as Strong as Its Weakest Link": An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and COVID-19. J Proteome Res 2020; 19:4327-4338. [PMID: 32883081 PMCID: PMC7640958 DOI: 10.1021/acs.jproteome.0c00387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly became a worldwide healthcare emergency affecting millions of people, with poor outcomes for patients with chronic conditions and enormous pressure on healthcare systems. Pulmonary fibrosis (PF) has been cited as a risk factor for a more severe evolution of COVID-19, primarily because its acute exacerbations are already associated with high mortality. We reviewed the available literature on biochemical, pathophysiological, and pharmacological mechanisms of PF and COVID-19 in an attempt to foresee the particular risk of infection and possible evolution of PF patients if infected with SARS-COV-2. We also analyzed the possible role of medication and risk factors (such as smoking) in the disease's evolution and clinical course. We found out that there is a complexity of interactions between coexisting idiopathic pulmonary fibrosis/interstitial lung disease (ILD) and COVID-19 disease. Also, patients recovering from severe COVID-19 disease are at serious risk of developing PF. Smokers seem to have, in theory, a chance for a better outcome if they develop a severe form of COVID-19 but statistically are at much higher risk of dying if they become critically ill.
Collapse
Affiliation(s)
- Radu Crisan-Dabija
- Clinic
of Pulmonary Diseases Iasi, Iasi, Romania
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
| | | | - Iolanda Valentina Popa
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Institute
of Gastroenterology and Hepatology, Iasi, Romania
| | - Andrei Tarus
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Department
of Cardiovascular Surgery, Cardiovascular
Diseases Institute, Iasi, Romania
| | - Alexandru Burlacu
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Department
of Interventional Cardiology, Cardiovascular
Diseases Institute, Iasi Romania
| |
Collapse
|
16
|
Wei L, Chen Q, Zheng Y, Nan L, Liao N, Mo S. Potential Role of Integrin α₅β₁/Focal Adhesion Kinase (FAK) and Actin Cytoskeleton in the Mechanotransduction and Response of Human Gingival Fibroblasts Cultured on a 3-Dimension Lactide-Co-Glycolide (3D PLGA) Scaffold. Med Sci Monit 2020; 26:e921626. [PMID: 32034900 PMCID: PMC7027369 DOI: 10.12659/msm.921626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The stability of orthodontic treatment is thought to be significantly affected by the compression and retraction of gingival tissues, but the underlying molecular mechanism is not fully elucidated. The objectives of our study were to explore the effects of mechanical force on the ECM-integrin-cytoskeleton linkage response in human gingival fibroblasts (HGFs) cultured on 3-dimension (3D) lactide-co-glycolide (PLGA) biological scaffold and to further study the mechanotransduction pathways that could be involved. MATERIAL AND METHODS A compressive force of 25 g/m² was applied to the HGFs-PLGA 3D co-cultured model. Rhodamine-phalloidin staining was used to evaluate the filamentous actin (F-actin) cytoskeleton. The expression level of type I collagen (COL-1) and the activation of the integrin alpha₅ß₁/focal adhesion kinase (FAK) signaling pathway were determined by using real-time PCR and Western blotting analysis. The impacts of the applied force on the expression levels of FAK, phosphorylated focal adhesion kinase (p-FAK), and COL-1 were also measured in cells treated with integrin alpha₅ß₁ inhibitor (Ac-PHSCN-NH 2, ATN-161). RESULTS Mechanical force increased the expression of integrin alpha₅ß₁, FAK (p-FAK), and COL-1 in HGFs, and induced the formation of stress fibers. Blocking integrin alpha₅ß₁ reduced the expression of FAK (p-FAK), while the expression of COL-1 was not fully inhibited. CONCLUSIONS The integrin alpha₅ß₁/FAK signaling pathway and actin cytoskeleton appear to be involved in the mechanotransduction of HGFs. There could be other mechanisms involved in the promotion effect of mechanical force on collagen synthesis in addition to the integrin alpha₅ß₁ pathway.
Collapse
Affiliation(s)
- Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qun Chen
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi Zheng
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ni Liao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
17
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
18
|
Nishizuka M, Komada R, Imagawa M. Knockdown of RhoE Expression Enhances TGF-β-Induced EMT (epithelial-to-mesenchymal transition) in Cervical Cancer HeLa Cells. Int J Mol Sci 2019; 20:ijms20194697. [PMID: 31546735 PMCID: PMC6801947 DOI: 10.3390/ijms20194697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer with early metastasis of the primary tumor is associated with poor prognosis and poor therapeutic outcomes. Since epithelial-to-mesenchymal transition (EMT) plays a role in acquisition of the ability to invade the pelvic lymph nodes and surrounding tissue, it is important to clarify the molecular mechanism underlying EMT in cervical cancer. RhoE, also known as Rnd3, is a member of the Rnd subfamily of Rho GTPases. While previous reports have suggested that RhoE may act as either a positive or a negative regulator of cancer metastasis and EMT, the role of RhoE during EMT in cervical cancer cells remains unclear. The present study revealed that RhoE expression was upregulated during transforming growth factor-β (TGF-β)-mediated EMT in human cervical cancer HeLa cells. Furthermore, reduced RhoE expression enhanced TGF-β-mediated EMT and migration of HeLa cells. In addition, we demonstrated that RhoE knockdown elevated RhoA activity and a ROCK inhibitor partially suppressed the acceleration of TGF-β-mediated EMT by RhoE knockdown. These results indicate that RhoE suppresses TGF-β-mediated EMT, partially via RhoA/ROCK signaling in cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Makoto Nishizuka
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Rina Komada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Masayoshi Imagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
19
|
Sun Q, Dong H, Li Y, Yuan F, Xu Y, Mao S, Xiong X, Chen Q, Liu B. Small GTPase RHOE/RND3, a new critical regulator of NF-κB signalling in glioblastoma multiforme? Cell Prolif 2019; 52:e12665. [PMID: 31332862 PMCID: PMC6797521 DOI: 10.1111/cpr.12665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Objectives Abnormal activation of NF‐κB signalling is a major mechanism of apoptosis resistance in glioblastoma multiforme (GBM). Therefore, better understanding of the regulation of NF‐κB signalling has a significant impact for GBM therapy. Here, we uncovered a critical role of the small GTPase RND3 in regulating the p65 subunit of NF‐κB and NF‐κB signalling in GBM. Materials and methods Human GBM samples, GBM cells and a human orthotopic GBM‐xenografted animal model were used. The mechanisms of RND3 in regulation of NF‐κB signalling and GBM cell apoptosis were examined by luciferase assay, quantitative PCR, immunostaining, immunoblotting, immunofluorescence, coimmunoprecipitation, TUNEL staining, JC‐1 analysis and flow cytometry. Results Overexpression of RND3 led to reduced p65 activity in GBM‐cultured cells and a GBM animal model, indicating that the NF‐κB pathway is negatively regulated by RND3 in GBM. Mechanistically, we found that RND3 bound p65 and promoted p65 ubiquitination, leading to decreased p65 protein levels. Furthermore, RND3 enhanced cleaved caspase 3 levels and promoted apoptosis in GBM cells, and RND3 expression was positively correlated with cleaved caspase 3 and IL‐8 in human GBM samples. The effect of RND3 on promoting apoptosis disappeared when p65 ubiquitination was blocked by protease inhibitor carfilzomib or upon co‐expression of ectopic p65. Conclusions RND3 binds p65 protein and promotes its ubiquitination, resulting in reduced p65 protein expression and inhibition of NF‐κB signalling to induce GBM cell apoptosis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanping Mao
- Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Burridge K, Monaghan-Benson E, Graham DM. Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180229. [PMID: 31431179 PMCID: PMC6627015 DOI: 10.1098/rstb.2018.0229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells respond and adapt to their physical environments and to the mechanical forces that they experience. The translation of physical forces into biochemical signalling pathways is known as mechanotransduction. In this review, we focus on two aspects of mechanotransduction. First, we consider how forces exerted on cell adhesion molecules at the cell surface regulate the RhoA signalling pathway by controlling the activities of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). In the second part of the review, we discuss how the nucleus contributes to mechanotransduction as a physical structure connected to the cytoskeleton. We focus on recent studies that have either severed the connections between the nucleus and the cytoskeleton, or that have entirely removed the nucleus from cells. These actions reduce the levels of active RhoA, thereby altering the mechanical properties of cells and decreasing their ability to generate tension and respond to external mechanical forces. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Graham
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Héraud C, Pinault M, Lagrée V, Moreau V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019; 8:cells8040351. [PMID: 31013840 PMCID: PMC6523970 DOI: 10.3390/cells8040351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.
Collapse
Affiliation(s)
- Capucine Héraud
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Mathilde Pinault
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Valérie Lagrée
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| |
Collapse
|