1
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
2
|
Fabijan A, Polis B, Zawadzka-Fabijan A, Korabiewska I, Zakrzewski K, Nowosławska E, Chojnacki M. Domains in Action: Understanding Ddi1's Diverse Functions in the Ubiquitin-Proteasome System. Int J Mol Sci 2024; 25:4080. [PMID: 38612889 PMCID: PMC11012796 DOI: 10.3390/ijms25074080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a pivotal cellular mechanism responsible for the selective degradation of proteins, playing an essential role in proteostasis, protein quality control, and regulating various cellular processes, with ubiquitin marking proteins for degradation through a complex, multi-stage process. The shuttle proteins family is a very unique group of proteins that plays an important role in the ubiquitin-proteasome system. Ddi1, Dsk2, and Rad23 are shuttle factors that bind ubiquitinated substrates and deliver them to the 26S proteasome. Besides mediating the delivery of ubiquitinated proteins, they are also involved in many other biological processes. Ddi1, the least-studied shuttle protein, exhibits unique physicochemical properties that allow it to play non-canonical functions in the cells. It regulates cell cycle progression and response to proteasome inhibition and defines MAT type of yeast cells. The Ddi1 contains UBL and UBA domains, which are crucial for binding to proteasome receptors and ubiquitin respectively, but also an additional domain called RVP. Additionally, much evidence has been provided to question whether Ddi1 is a classical shuttle protein. For many years, the true nature of this protein remained unclear. Here, we highlight the recent discoveries, which shed new light on the structure and biological functions of the Ddi1 protein.
Collapse
Affiliation(s)
- Artur Fabijan
- Department of Neurosurgery, Polish-Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.P.); (K.Z.); (E.N.)
| | - Bartosz Polis
- Department of Neurosurgery, Polish-Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.P.); (K.Z.); (E.N.)
| | - Agnieszka Zawadzka-Fabijan
- Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Izabela Korabiewska
- Department of Rehabilitation, Faculty of Dental Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Krzysztof Zakrzewski
- Department of Neurosurgery, Polish-Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.P.); (K.Z.); (E.N.)
| | - Emilia Nowosławska
- Department of Neurosurgery, Polish-Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.P.); (K.Z.); (E.N.)
| | - Michał Chojnacki
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
3
|
Lin BC, Higgins NR, Phung TH, Monteiro MJ. UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. FEBS J 2022; 289:6132-6153. [PMID: 34273246 PMCID: PMC8761781 DOI: 10.1111/febs.16129] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023]
Abstract
Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis and frontotemporal dementia. We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
Collapse
Affiliation(s)
- Brian C. Lin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole R. Higgins
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trong H. Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mervyn J. Monteiro
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Pečenková T, Pejchar P, Moravec T, Drs M, Haluška S, Šantrůček J, Potocká A, Žárský V, Potocký M. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. MOLECULAR PLANT PATHOLOGY 2022; 23:664-678. [PMID: 35122385 PMCID: PMC8995067 DOI: 10.1111/mpp.13187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Moravec
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiří Šantrůček
- Department of Biochemistry and MicrobiologyFaculty of Food and Biochemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
5
|
Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol 2022; 75:102074. [PMID: 35364487 DOI: 10.1016/j.ceb.2022.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
The majority of the proteome in eukaryotic cells is targeted to organelles. To maintain protein homeostasis (proteostasis), distinct protein quality control (PQC) machineries operate on organelles, where they detect misfolded proteins, orphaned and mis-localized proteins and selectively target these proteins into different ubiquitin-dependent or -independent degradation pathways. Thereby, PQC prevents proteotoxic effects that would disrupt organelle integrity and cause cellular damage that leads to diseases. Here, we will discuss emerging mechanisms for PQC machineries at the Golgi apparatus, the central station for the sorting and the modification of proteins that traffic to the endo-lysosomal system, or along the secretory pathway to the PM and to the extracellular space. We will focus on Golgi PQC pathways that (1) retrieve misfolded and orphaned proteins from the Golgi back to the endoplasmic reticulum, (2) extract these proteins from Golgi membranes for proteasomal degradation, (3) or selectively target these proteins to lysosomes for degradation.
Collapse
Affiliation(s)
- Sinead Schwabl
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
6
|
Pujari I, Thomas A, Sankar Babu V. Native and non-native host assessment towards metabolic pathway reconstructions of plant natural products. ACTA ACUST UNITED AC 2021; 30:e00619. [PMID: 33996523 PMCID: PMC8091882 DOI: 10.1016/j.btre.2021.e00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
Plant metabolic networks are highly complex. Engineering the phytochemical pathways fully in heterologous hosts is challenging. Single plant cells with amplified multiple fission enable homogeneity. Homogeneity and high cell division rate can facilitate stable product scale-up.
Plant-based biopreparations are reasonably priced and are devoid of viral, prion and endotoxin contaminants. However, synthesizing these natural plant products by chemical methods is quite expensive. The structural complexity of plant-derived natural products poses a challenge for chemical synthesis at a commercial scale. Failure of commercial-scale synthesis is the chief reason why metabolic reconstructions in heterologous hosts are inevitable. This review discusses plant metabolite pathway reconstructions experimented in various heterologous hosts, and the inherent challenges involved. Plants as native hosts possess enhanced post-translational modification ability, along with rigorous gene edits, unlike microbes. To achieve a high yield of metabolites in plants, increased cell division rate is one of the requisites. This improved cell division rate will promote cellular homogeneity. Incorporation and maintenance of plant cell synchrony, in turn, can program stable product scale-up.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abitha Thomas
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
7
|
Homchan A, Sukted J, Matangkasombut O, Pakotiprapha D. Emerging roles of Wss1 in the survival of Candida albicans under genotoxic stresses. Curr Genet 2020; 67:99-105. [PMID: 33140121 DOI: 10.1007/s00294-020-01123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
This perspective aims to discuss the potential physiological roles and regulation mechanisms of the recently identified Candida albicans Wss1 protease important in DNA-protein crosslink (DPC) tolerance and repair. DPC is a bulky DNA lesion that blocks essential DNA transactions; thus, it poses a significant threat to genome integrity if left unrepaired. Discoveries of Wss1 in Saccharomyces cerevisiae and SPRTN in human as DPC proteases have demonstrated the importance of protease function in DPC repair. Our recent study revealed that Wss1 in C. albicans, an opportunistic pathogen that can cause life-threatening infection in immunocompromised individuals, also promotes DPC tolerance similarly to both S. cerevisiae Wss1 and human SPRTN. However, its molecular mechanism and regulation are still poorly understood. Here, we briefly discuss the recent insights into C. albicans Wss1 based on the information from S. cerevisiae, as well as outline the aspect of this protein that could make it a potential target for antifungal drug development.
Collapse
Affiliation(s)
- Aimorn Homchan
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Juthamas Sukted
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand. .,Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
El Dika M. New insights into the regulation of DNA-Protein Crosslink Repair by the Aspartic Protease Ddi1 in yeast. DNA Repair (Amst) 2020; 90:102854. [PMID: 32330640 DOI: 10.1016/j.dnarep.2020.102854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Mohammed El Dika
- Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France.
| |
Collapse
|
9
|
The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Mol Cell 2020; 77:1066-1079.e9. [PMID: 31902667 DOI: 10.1016/j.molcel.2019.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.
Collapse
|