1
|
Kandror KV. Self-assembly of the insulin-responsive vesicles creates a signaling platform for the insulin action on glucose uptake. VITAMINS AND HORMONES 2024; 128:93-121. [PMID: 40097254 DOI: 10.1016/bs.vh.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In fat and skeletal muscle cells, insulin causes plasma membrane translocation of specialized insulin-responsive vesicles, or IRVs. These vesicles consist of multiple copies of Glut4, sortilin, IRAP, and LRP1 as well as several auxiliary components. Major IRV proteins have relatively long half-life inside the cell and survive multiple rounds of translocation to and from the cell surface. Here, we summarize evidence showing how the IRVs are self-assembled from pre-synthesized Glut4, sortilin, IRAP, and LRP1 after each translocation event. Furthermore, the cytoplasmic tail of sortilin binds Akt while cytoplasmic tails of IRAP and LRP1 interact with the Akt target, TBC1D4. Recruitment of signaling proteins to the IRVs may render insulin responsiveness to this compartment and thus distinguish it from other intracellular membrane vesicles.
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
2
|
Engen K, Lundbäck T, Yadav A, Puthiyaparambath S, Rosenström U, Gising J, Jenmalm-Jensen A, Hallberg M, Larhed M. Inhibition of Insulin-Regulated Aminopeptidase by Imidazo [1,5-α]pyridines-Synthesis and Evaluation. Int J Mol Sci 2024; 25:2516. [PMID: 38473764 DOI: 10.3390/ijms25052516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.
Collapse
Affiliation(s)
- Karin Engen
- Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Chemical Biology and Genome Engineering, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65 Solna, Sweden
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Anubha Yadav
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Sharathna Puthiyaparambath
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Chemical Biology and Genome Engineering, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65 Solna, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Uppsala University, BMC, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
3
|
Benadda S, Nugue M, Koumantou D, Bens M, De Luca M, Pellé O, Monteiro RC, Evnouchidou I, Saveanu L. Activating FcγR function depends on endosomal-signaling platforms. iScience 2023; 26:107055. [PMID: 37360697 PMCID: PMC10285637 DOI: 10.1016/j.isci.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Cell surface receptor internalization can either terminate signaling or activate alternative endosomal signaling pathways. We investigated here whether endosomal signaling is involved in the function of the human receptors for Fc immunoglobulin fragments (FcRs): FcαRI, FcγRIIA, and FcγRI. All these receptors were internalized after their cross-linking with receptor-specific antibodies, but their intracellular trafficking was different. FcαRI was targeted directly to lysosomes, while FcγRIIA and FcγRI were internalized in particular endosomal compartments described by the insulin esponsive minoeptidase (IRAP), where they recruited signaling molecules, such as the active form of the kinase Syk, PLCγ and the adaptor LAT. Destabilization of FcγR endosomal signaling in the absence of IRAP compromised cytokine secretion downstream FcγR activation and macrophage ability to kill tumor cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Our results indicate that FcγR endosomal signaling is required for the FcγR-driven inflammatory reaction and possibly for the therapeutic action of monoclonal antibodies.
Collapse
Affiliation(s)
- Samira Benadda
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Marcelle Bens
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Mariacristina De Luca
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Olivier Pellé
- INSERM UMR 1163, Cell Sorting Facility, Paris, France
- INSERM UMR 1163, Laboratoire of Immunogenetics of Pediatric Autoimmunity, Paris, France
| | - Renato C. Monteiro
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Inovarion, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
4
|
Bratti M, Vibhushan S, Longé C, Koumantou D, Ménasché G, Benhamou M, Varin-Blank N, Blank U, Saveanu L, Ben Mkaddem S. Insulin-regulated aminopeptidase contributes to setting the intensity of FcR-mediated inflammation. Front Immunol 2022; 13:1029759. [PMID: 36389775 PMCID: PMC9647545 DOI: 10.3389/fimmu.2022.1029759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on β and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.
Collapse
Affiliation(s)
- Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Ulrich Blank,
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Sanae Ben Mkaddem
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
- Institute of biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
5
|
Livingstone R, Bryant NJ, Boyle JG, Petrie JR, Gould G. Diabetes is accompanied by changes in the levels of proteins involved in endosomal
GLUT4
trafficking in obese human skeletal muscle. Endocrinol Diabetes Metab 2022; 5:e361. [PMID: 35964329 PMCID: PMC9471587 DOI: 10.1002/edm2.361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction The regulated delivery of the glucose transporter GLUT4 from intracellular stores to the plasma membrane underpins insulin‐stimulated glucose transport. Insulin‐stimulated glucose transport is impaired in skeletal muscle of patients with type‐2 diabetes, and this may arise because of impaired intracellular trafficking of GLUT4. However, molecular details of any such impairment have not been described. We hypothesized that GLUT4 and/or levels of proteins involved in intracellular GLUT4 trafficking may be impaired in skeletal muscle in type‐2 diabetes and tested this in obese individuals without and without type‐2 diabetes. Methods We recruited 12 participants with type‐2 diabetes and 12 control participants. All were overweight or obese with BMI of 25–45 kg/m2. Insulin sensitivity was measured using an insulin suppression test (IST), and vastus lateralis biopsies were taken in the fasted state. Cell extracts were immunoblotted to quantify levels of a range of proteins known to be involved in intracellular GLUT4 trafficking. Results Obese participants with type‐2 diabetes exhibited elevated fasting blood glucose and increased steady state glucose infusion rates in the IST compared with controls. Consistent with this, skeletal muscle from those with type‐2 diabetes expressed lower levels of GLUT4 (30%, p = .014). Levels of Syntaxin4, a key protein involved in GLUT4 vesicle fusion with the plasma membrane, were similar between groups. By contrast, we observed reductions in levels of Syntaxin16 (33.7%, p = 0.05), Sortilin (44%, p = .006) and Sorting Nexin‐1 (21.5%, p = .039) and −27 (60%, p = .001), key proteins involved in the intracellular sorting of GLUT4, in participants with type‐2 diabetes. Conclusions We report significant reductions of proteins involved in the endosomal trafficking of GLUT4 in skeletal muscle in obese people with type 2 diabetes compared with age‐ and weight‐matched controls. These abnormalities of intracellular GLUT4 trafficking may contribute to reduced whole body insulin sensitivity.
Collapse
Affiliation(s)
- Rachel Livingstone
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
- Institute of Molecular Cell and Systems Biology University of Glasgow Glasgow UK
| | | | | | - John R. Petrie
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
| | - Gwyn W. Gould
- Institute of Molecular Cell and Systems Biology University of Glasgow Glasgow UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow UK
| |
Collapse
|
6
|
Black HL, Livingstone R, Mastick CC, Al Tobi M, Taylor H, Geiser A, Stirrat L, Kioumourtzoglou D, Petrie JR, Boyle JG, Bryant NJ, Gould GW. Knockout of Syntaxin-4 in 3T3-L1 adipocytes reveals new insight into GLUT4 trafficking and adiponectin secretion. J Cell Sci 2021; 135:273617. [PMID: 34859814 PMCID: PMC8767277 DOI: 10.1242/jcs.258375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Adipocytes are key to metabolic regulation, exhibiting insulin-stimulated glucose transport that is underpinned by the insulin-stimulated delivery of glucose transporter type 4 (SLC2A4, also known and hereafter referred to as GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, and increase cell surface GLUT4 levels. Adipocytokines, such as adiponectin, are secreted via a similar mechanism. We used genome editing to knock out syntaxin-4, a protein reported to mediate fusion between GLUT4-containing vesicles and the plasma membrane in 3T3-L1 adipocytes. Syntaxin-4 knockout reduced insulin-stimulated glucose transport and adiponectin secretion by ∼50% and reduced GLUT4 levels. Ectopic expression of haemagglutinin (HA)-tagged GLUT4 conjugated to GFP showed that syntaxin-4-knockout cells retain significant GLUT4 translocation capacity, demonstrating that syntaxin-4 is dispensable for insulin-stimulated GLUT4 translocation. Analysis of recycling kinetics revealed only a modest reduction in the exocytic rate of GLUT4 in knockout cells, and little effect on endocytosis. These analyses demonstrate that syntaxin-4 is not always rate limiting for GLUT4 delivery to the cell surface. In sum, we show that syntaxin-4 knockout results in reduced insulin-stimulated glucose transport, depletion of cellular GLUT4 levels and inhibition of adiponectin secretion but has only modest effects on the translocation capacity of the cells. This article has an associated First Person interview with Hannah L. Black and Rachel Livingstone, joint first authors of the paper. Summary: Syntaxin-4 knockout reduces insulin-stimulated glucose transport, depletes levels of cellular GLUT4 and inhibits secretion of adiponectin but only modestly affects the translocation capacity of the cells.
Collapse
Affiliation(s)
- Hannah L Black
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - Rachel Livingstone
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cynthia C Mastick
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Mohammed Al Tobi
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Holly Taylor
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Angéline Geiser
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Laura Stirrat
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Dimitrios Kioumourtzoglou
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow. Glasgow G12 8QQ, UK
| | - James G Boyle
- Institute of Cardiovascular and Medical Sciences, University of Glasgow. Glasgow G12 8QQ, UK.,School of Medicine, Dentistry and Nursing, University of Glasgow. Glasgow G12 8QQ, UK
| | - Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - Gwyn W Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
7
|
Evnouchidou I, Caillens V, Koumantou D, Saveanu L. The role of endocytic trafficking in antigen T Cell Receptor activation. Biomed J 2021; 45:310-320. [PMID: 34592497 PMCID: PMC9250096 DOI: 10.1016/j.bj.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation.
Collapse
Affiliation(s)
- Irini Evnouchidou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| | - Vivien Caillens
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| |
Collapse
|
8
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Wang H, Zhang Z, Guan J, Lu W, Zhan C. Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks. Asian J Pharm Sci 2021; 16:120-128. [PMID: 33613735 PMCID: PMC7878461 DOI: 10.1016/j.ajps.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glucose transporter (GLUT)-mediated transcytosis has been validated as an efficient method to cross the blood-brain barrier and enhance brain transport of nanomedicines. However, the transcytosis process remains elusive. Glycopeptide-modified nanodisks (Gly-A7R-NDs), which demonstrated high capacity of brain targeting via GLUT-mediated transcytosis in our previous reports, were utilized to better understand the whole transcytosis process. Gly-A7R-NDs internalized brain capillary endothelial cells mainly via GLUT-mediated/clathrin dependent endocytosis and macropinocytosis. The intracellular Gly-A7R-NDs remained intact, and the main excretion route of Gly-A7R-NDs was lysosomal exocytosis. Glycosylation of nanomedicine was crucial in GLUT-mediated transcytosis, while morphology did not affect the efficiency. This study highlights the pivotal roles of lysosomal exocytosis in the process of GLUT-mediated transcytosis, providing a new impetus to development of brain targeting drug delivery by accelerating lysosomal exocytosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
- School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| | - Weiyue Lu
- School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai 201203, China
| |
Collapse
|
10
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
11
|
Vear A, Gaspari T, Thompson P, Chai SY. Is There an Interplay Between the Functional Domains of IRAP? Front Cell Dev Biol 2020; 8:585237. [PMID: 33134302 PMCID: PMC7550531 DOI: 10.3389/fcell.2020.585237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
As a member of the M1 family of aminopeptidases, insulin regulated aminopeptidase (IRAP) is characterized by distinct binding motifs at the active site in the C-terminal domain that mediate the catalysis of peptide substrates. However, what makes IRAP unique in this family of enzymes is that it also possesses trafficking motifs at the N-terminal domain which regulate the movement of IRAP within different intracellular compartments. Research on the role of IRAP has focused predominantly on the C-terminus catalytic domain in different physiological and pathophysiological states ranging from pregnancy to memory loss. Many of these studies have utilized IRAP inhibitors, that bind competitively to the active site of IRAP, to explore the functional significance of its catalytic activity. However, it is unknown whether these inhibitors are able to access intracellular sites where IRAP is predominantly located in a basal state as the enzyme may need to be at the cell surface for the inhibitors to mediate their effects. This property of IRAP has often been overlooked. Interestingly, in some pathophysiological states, the distribution of IRAP is altered. This, together with the fact that IRAP possesses trafficking motifs, suggest the localization of IRAP may play an important role in defining its physiological or pathological functions and provide insights into the interplay between the two functional domains of the protein.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Philip Thompson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
13
|
Camus SM, Camus MD, Figueras-Novoa C, Boncompain G, Sadacca LA, Esk C, Bigot A, Gould GW, Kioumourtzoglou D, Perez F, Bryant NJ, Mukherjee S, Brodsky FM. CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 2020; 219:133472. [PMID: 31863584 PMCID: PMC7039200 DOI: 10.1083/jcb.201812135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Blood glucose clearance relies on insulin-stimulated exocytosis of glucose transporter 4 (GLUT4) from sites of sequestration in muscle and fat. This work demonstrates that, in humans, CHC22 clathrin controls GLUT4 traffic from the ER-to-Golgi intermediate compartment to sites of sequestration during GLUT4 pathway biogenesis. Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.
Collapse
Affiliation(s)
- Stéphane M Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | - Marine D Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | | | - Gaelle Boncompain
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | | | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anne Bigot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, UMR S974 Centre for Research in Myology, Paris, France
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dimitrios Kioumourtzoglou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| |
Collapse
|
14
|
Goto Y, Nakamura TJ, Ogawa K, Hattori A, Tsujimoto M. Reciprocal Expression Patterns of Placental Leucine Aminopeptidase/Insulin-Regulated Aminopeptidase and Vasopressin in the Murine Brain. Front Mol Biosci 2020; 7:168. [PMID: 32793633 PMCID: PMC7393517 DOI: 10.3389/fmolb.2020.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Placental leucine aminopeptidase/insulin-regulated aminopeptidase (P-LAP/IRAP) regulates vasopressin and oxytocin levels in the brain and peripheral tissues by controlled degradation of these peptides. In this study, we determined the relationship between P-LAP/IRAP and vasopressin levels in subregions of the murine brain. P-LAP/IRAP expression was observed in almost all brain regions. The expression patterns of P-LAP/IRAP and vasopressin indicated that cells expressing one of these protein/peptide were distinct from those expressing the other, although there was significant overlap between the expression regions. In addition, we found reciprocal diurnal rhythm patterns in P-LAP/IRAP and arginine vasopressin (AVP) expression in the hippocampus and pituitary gland. Further, synchronously cultured PC12 cells on treatment with nerve growth factor (NGF) showed circadian expression patterns of P-LAP/IRAP and enzymatic activity during 24 h of incubation. Considering that vasopressin is one of the most efficient peptide substrates of P-LAP/IRAP, these results suggest a possible feedback loop between P-LAP/IRAP and vasopressin expression, that regulates the function of these substrate peptides of the enzyme via translocation of P-LAP/IRAP from intracellular vesicles to the plasma membrane in brain cells. These findings provide novel insights into the functions of P-LAP/IRAP in the brain and suggest the involvement of these peptides in modulation of brain AVP functions in hyperosmolality, memory, learning, and circadian rhythm.
Collapse
Affiliation(s)
- Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kenji Ogawa
- Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| |
Collapse
|
15
|
Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends Cell Biol 2020; 30:705-719. [PMID: 32620516 DOI: 10.1016/j.tcb.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Insulin stimulates glucose transport by triggering regulated delivery of intracellular vesicles containing the GLUT4 glucose transporter to the plasma membrane. This process is defective in diseases such as type 2 diabetes (T2DM). While studies in rodent cells have been invaluable in understanding GLUT4 traffic, evolutionary plasticity must be considered when extrapolating these findings to humans. Recent work has identified species-specific distinctions in GLUT4 traffic, notably the participation of a novel clathrin isoform, CHC22, in humans but not rodents. Here, we discuss GLUT4 sorting in different species and how studies of CHC22 have identified new routes for GLUT4 trafficking. We further consider how different sorting-protein complexes relate to these routes and discuss other implications of these pathways in cell biology and disease.
Collapse
|
16
|
IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun 2020; 11:2779. [PMID: 32487999 PMCID: PMC7265453 DOI: 10.1038/s41467-020-16471-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/03/2020] [Indexed: 11/09/2022] Open
Abstract
T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation. T cell receptors (TCR) are internalized when activated by their ligands. Here the authors show that the internalized TCRs are localized to endosomes expressing IRAP and Syntaxin 6 to maintain intracellular signalling capacity, whose importance is shown by the absence of efficient polyclonal anti-tumour response in mice with T-specific conditional deletion of IRAP.
Collapse
|