1
|
Perrier A, Guiglielmoni N, Naquin D, Gorrichon K, Thermes C, Lameiras S, Dammermann A, Schiffer PH, Brunstein M, Canman JC, Dumont J. Maternal inheritance of functional centrioles in two parthenogenetic nematodes. Nat Commun 2024; 15:6042. [PMID: 39025889 PMCID: PMC11258339 DOI: 10.1038/s41467-024-50427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus, centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys, the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.
Collapse
Affiliation(s)
- Aurélien Perrier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nadège Guiglielmoni
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kevin Gorrichon
- Centre de Référence, d'Innovation, d'eXpertise et de transfert (CRefIX), US 039 CEA/INRIA/INSERM, Evry, France
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, 1030, Vienna, Austria
| | - Philipp H Schiffer
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Maia Brunstein
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l'Audition, F-75012, Paris, France
| | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
2
|
Pierron M, Woglar A, Busso C, Jha K, Mikeladze‐Dvali T, Croisier M, Gönczy P. Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1. EMBO J 2023; 42:e115076. [PMID: 37987153 PMCID: PMC10711648 DOI: 10.15252/embj.2023115076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.
Collapse
Affiliation(s)
- Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | | | - Marie Croisier
- BIO‐EM platform, School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
3
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Kalbfuss N, Berger A, Gönczy P. Mapping of centriolar proteins onto the post-embryonic lineage of C. elegans. Dev Biol 2023; 502:68-76. [PMID: 37414202 DOI: 10.1016/j.ydbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Centrioles, together with the surrounding peri-centriolar material (PCM), constitute the centrosome, a major microtubule-organizing center of animal cells. Despite being critical in many cells for signaling, motility and division, centrioles can be eliminated in some systems, including in the vast majority of differentiating cells during embryogenesis in Caenorhabditis elegans. Whether the cells retaining centrioles in the resulting L1 larvae do so because they lack an activity that eliminates centrioles in the other cells is not known. Moreover, the extent to which centrioles and PCM remain present in later stages of worm development, when all cells but those of the germ line are terminally differentiated, is not known. Here, by fusing cells that lack centrioles with cells that retain them, we established that L1 larvae do not possess a diffusible elimination activity sufficient to remove centrioles. Moreover, analyzing PCM core proteins in L1 larval cells that retain centrioles, we found that some such proteins, but not all, are present as well. Furthermore, we uncovered that foci of centriolar proteins remain present in specific terminally differentiated cells of adult hermaphrodites and males, in particular in the somatic gonad. Correlating the time at which cells were born with the fate of their centrioles revealed that it is not cell age, but instead cell fate, that determines whether and when centrioles are eliminated. Overall, our work maps the localization of centriolar and PCM core proteins in the post-embryonic C. elegans lineage, thereby providing an essential blueprint for uncovering mechanisms modulating their presence and function.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Antonin Berger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
5
|
Kalbfuss N, Gönczy P. Extensive programmed centriole elimination unveiled in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadg8682. [PMID: 37256957 PMCID: PMC10413642 DOI: 10.1126/sciadv.adg8682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Centrioles are critical for fundamental cellular processes, including signaling, motility, and division. The extent to which centrioles are present after cell cycle exit in a developing organism is not known. The stereotypical lineage of Caenorhabditis elegans makes it uniquely well-suited to investigate this question. Using notably lattice light-sheet microscopy, correlative light electron microscopy, and lineage assignment, we found that ~88% of cells lose centrioles during embryogenesis. Our analysis reveals that centriole elimination is stereotyped, occurring invariably at a given time in a given cell type. Moreover, we established that experimentally altering cell fate results in corresponding changes in centriole fate. Overall, we uncovered the existence of an extensive centriole elimination program, which we anticipate to be paradigmatic for a broad understanding of centriole fate regulation.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
6
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|