1
|
Kim DS, Cheah JS, Lai TW, Zhao KX, Foust SR, Julie Lee YR, Lo SH, Heinrich V, Yamada S. Tandem LIM domain-containing proteins, LIMK1 and LMO1, directly bind to force-bearing keratin intermediate filaments. Cell Rep 2024; 43:114480. [PMID: 39003737 PMCID: PMC11610427 DOI: 10.1016/j.celrep.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.
Collapse
Affiliation(s)
- Dah Som Kim
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Joleen S Cheah
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Tzu Wei Lai
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Karen X Zhao
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Skylar R Foust
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, Davis CA 95616, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis CA 95616 USA
| | - Volkmar Heinrich
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Soichiro Yamada
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA.
| |
Collapse
|
2
|
Kliewe F, Siegerist F, Hammer E, Al-Hasani J, Amling TRJ, Hollemann JZE, Schindler M, Drenic V, Simm S, Amann K, Daniel C, Lindenmeyer M, Hecker M, Völker U, Endlich N. Zyxin is important for the stability and function of podocytes, especially during mechanical stretch. Commun Biol 2024; 7:446. [PMID: 38605154 PMCID: PMC11009394 DOI: 10.1038/s42003-024-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | | | | | - Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Vedran Drenic
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| |
Collapse
|
3
|
Conway JRW, Isomursu A, Follain G, Härmä V, Jou-Ollé E, Pasquier N, Välimäki EPO, Rantala JK, Ivaska J. Defined extracellular matrix compositions support stiffness-insensitive cell spreading and adhesion signaling. Proc Natl Acad Sci U S A 2023; 120:e2304288120. [PMID: 37844244 PMCID: PMC10614832 DOI: 10.1073/pnas.2304288120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
Integrin-dependent adhesion to the extracellular matrix (ECM) mediates mechanosensing and signaling in response to altered microenvironmental conditions. In order to provide tissue- and organ-specific cues, the ECM is composed of many different proteins that temper the mechanical properties and provide the necessary structural diversity. Despite most human tissues being soft, the prevailing view from predominantly in vitro studies is that increased stiffness triggers effective cell spreading and activation of mechanosensitive signaling pathways. To address the functional coupling of ECM composition and matrix rigidity on compliant substrates, we developed a matrix spot array system to screen cell phenotypes against different ECM mixtures on defined substrate stiffnesses at high resolution. We applied this system to both cancer and normal cells and surprisingly identified ECM mixtures that support stiffness-insensitive cell spreading on soft substrates. Employing the motor-clutch model to simulate cell adhesion on biochemically distinct soft substrates, with varying numbers of available ECM-integrin-cytoskeleton (clutch) connections, we identified conditions in which spreading would be supported on soft matrices. Combining simulations and experiments, we show that cell spreading on soft is supported by increased clutch engagement on specific ECM mixtures and even augmented by the partial inhibition of actomyosin contractility. Thus, "stiff-like" spreading on soft is determined by a balance of a cell's contractile and adhesive machinery. This provides a fundamental perspective for in vitro mechanobiology studies, identifying a mechanism through which cells spread, function, and signal effectively on soft substrates.
Collapse
Affiliation(s)
- James R. W. Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Ville Härmä
- Misvik Biology Oy, TurkuFI-20520, Finland
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Eva Jou-Ollé
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Nicolas Pasquier
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | | | - Juha K. Rantala
- Misvik Biology Oy, TurkuFI-20520, Finland
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
- Department of Life Technologies, University of Turku, TurkuFI-20520, Finland
- InFLAMES Research Flagship, University of Turku, TurkuFI-20520, Finland
- Western Finnish Cancer Center, University of Turku, TurkuFI-20520, Finland
- Foundation for the Finnish Cancer Institute, HelsinkiFI-00014, Finland
| |
Collapse
|
4
|
Huang Y, Zhao H, Zhang Y, Tang Y, Shi X, Jiang S, Pu W, Liu J, Ma Y, Lin J, Lin J, Wu W, Gong Y, Wang J, Liu Q. Enhancement of Zyxin Promotes Skin Fibrosis by Regulating FAK/PI3K/AKT and TGF-β Signaling Pathways via Integrins. Int J Biol Sci 2023; 19:2394-2408. [PMID: 37215989 PMCID: PMC10197900 DOI: 10.7150/ijbs.77649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Skin fibrosis is a common pathological manifestation in systemic sclerosis (SSc), keloid, and localized scleroderma (LS) characterized by fibroblast activation and excessive extracellular matrix (ECM) deposition. However, few effective drugs are available to treat skin fibrosis due to its unclear mechanisms. In our study, we reanalyzed skin RNA-sequencing data of Caucasian, African, and Hispanic SSc patients from the Gene Expression Omnibus (GEO) database. We found that the focal adhesion pathway was up-regulated and Zyxin appeared to be the primary focal adhesion protein involved in skin fibrosis, and we further verified its expression in Chinese skin tissues of several fibrotic diseases, including SSc, keloid, and LS. Moreover, we found Zyxin inhibition could significantly alleviate skin fibrosis using Zyxin knock-down and knock-out mice, nude mouse model and skin explants of human keloid. Double immunofluorescence staining showed that Zyxin was highly expressed in fibroblasts. Further analysis revealed pro-fibrotic gene expression and collagen production increased in Zyxin over-expressed fibroblasts, and decreased in Zyxin interfered SSc fibroblasts. In addition, transcriptome and cell culture analyses revealed Zyxin inhibition could effectively attenuate skin fibrosis by regulating the FAK/PI3K/AKT and TGF-β signaling pathways via integrins. These results suggest Zyxin appears a potential new therapeutic target for skin fibrosis.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Nanjing Intellectual Property Protection Center, Nanjing, China
| | - Yuting Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Institute for Six-sector Economy, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juiming Lin
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
| | - Jinran Lin
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
| | - Wenyu Wu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
- Department of Dermatology, Jing' an District Central Hospital, Shanghai, China
| | - Yiyi Gong
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Qingmei Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Lynch AM, Zhu Y, Lucas BG, Winkelman JD, Bai K, Martin SCT, Block S, Slabodnick MM, Audhya A, Goldstein B, Pettitt J, Gardel ML, Hardin J. TES-1/Tes and ZYX-1/Zyxin protect junctional actin networks under tension during epidermal morphogenesis in the C. elegans embryo. Curr Biol 2022; 32:5189-5199.e6. [PMID: 36384139 PMCID: PMC9729467 DOI: 10.1016/j.cub.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
LIM-domain-containing repeat (LCR) proteins are recruited to strained actin filaments within stress fibers in cultured cells,1,2,3 but their roles at cell-cell junctions in living organisms have not been extensively studied. Here, we show that the Caenorhabditis elegans LCR proteins TES-1/Tes and ZYX-1/Zyxin are recruited to apical junctions during embryonic elongation when junctions are under tension. In genetic backgrounds in which embryonic elongation fails, junctional recruitment is severely compromised. The two proteins display complementary patterns of expression: TES-1 is expressed in lateral (seam) epidermal cells, whereas ZYX-1 is expressed in dorsal and ventral epidermal cells. tes-1 and zyx-1 mutant embryos display junctional F-actin defects. The loss of either protein strongly enhances morphogenetic defects in hypomorphic mutant backgrounds for cadherin/catenin complex (CCC) components. The LCR regions of TES-1 and ZYX-1 are recruited to stress fiber strain sites (SFSSs) in cultured vertebrate cells. Together, these data establish TES-1 and ZYX-1 as components of a multicellular, tension-sensitive system that stabilizes the junctional actin cytoskeleton during embryonic morphogenesis.
Collapse
Affiliation(s)
- Allison M Lynch
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Yuyun Zhu
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Bethany G Lucas
- Department of Biology, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Keliya Bai
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mark M Slabodnick
- Department of Biology, Knox University, Galesburg, IL 61401, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan Pettitt
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Department of Physics, James Franck Institute and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA; Biophysics Program, University of Wisconsin, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Polo-Like Kinase 2 Plays an Essential Role in Cytoprotection against MG132-Induced Proteasome Inhibition via Phosphorylation of Serine 19 in HSPB5. Int J Mol Sci 2022; 23:ijms231911257. [PMID: 36232565 PMCID: PMC9569985 DOI: 10.3390/ijms231911257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Protein homeostasis, including protein folding, refolding, and degradation, is thought to decline with aging. HSPB5 (also known as αB-crystallin) prevents target protein aggregation as a molecular chaperone and exhibits a cytoprotective function against various cell stresses. To elucidate the effect of HSPB5 on endoplasmic reticulum (ER) stress, we searched for novel binding proteins of HSPB5 using the proximity-dependent biotin labeling method. Proteins presumed to interact with HSPB5 in cells treated with the proteasome inhibitor MG132 were identified by a reversible biotin-binding capacity method combining tamavidin2-REV magnetic beads and mass spectrometry. We discovered a new binding protein for HSPB5, polo-like kinase 2 (PLK2), which is an apoptosis-related enzyme. The expression of PLK2 was upregulated by MG132 treatment, and it was co-localized with HSPB5 near the ER in L6 muscle cells. Inhibition of PLK2 decreased ER stress-induced phosphorylation of serine 19 in HSPB5 and increased apoptosis by activation of caspase 3 under ER stress. Overexpression of HSPB5 (WT) suppressed the ER stress-induced caspase 3 activity, but this was not observed with phospho-deficient HSPB5 (3A) mutants. These results clarify the role of HSPB5 phosphorylation during ER stress and suggest that the PLK2/HSPB5 pathway plays an essential role in cytoprotection against proteasome inhibition-induced ER stress.
Collapse
|
7
|
Nast-Kolb T, Bleicher P, Payr M, Bausch AR. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol Biol Cell 2022; 33:ar91. [PMID: 35830600 PMCID: PMC9582628 DOI: 10.1091/mbc.e21-11-0577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Actin bundles constitute important cytoskeleton structures and enable a scaffold for force transmission inside cells. Actin bundles are formed by proteins, with multiple F-actin binding domains cross-linking actin filaments to each other. Vasodilator-stimulated phosphoprotein (VASP) has mostly been reported as an actin elongator, but it has been shown to be a bundling protein as well and is found in bundled actin structures at filopodia and adhesion sites. Based on in vitro experiments, it remains unclear when and how VASP can act as an actin bundler or elongator. Here we demonstrate that VASP bound to membranes facilitates the formation of large actin bundles during polymerization. The alignment by polymerization requires the fluidity of the lipid bilayers. The mobility within the bilayer enables VASP to bind to filaments and capture and track growing barbed ends. VASP itself phase separates into a protein-enriched phase on the bilayer. This VASP-rich phase nucleates and accumulates at bundles during polymerization, which in turn leads to a reorganization of the underlying lipid bilayer. Our findings demonstrate that the nature of VASP localization is decisive for its function. The up-concentration based on VASP’s affinity to actin during polymerization enables it to simultaneously fulfill the function of an elongator and a bundler.
Collapse
Affiliation(s)
- T Nast-Kolb
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and
| | - P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - M Payr
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhoferstr. 1, 69117 Heidelberg, Germany
| | - A R Bausch
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| |
Collapse
|
8
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
9
|
Kim JM, Kang YM. Optical Fluorescence Imaging of Native Proteins Using a Fluorescent Probe with a Cell-Membrane-Permeable Carboxyl Group. Int J Mol Sci 2022; 23:ijms23105841. [PMID: 35628651 PMCID: PMC9143923 DOI: 10.3390/ijms23105841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Although various methods for selective protein tagging have been established, their ap plications are limited by the low fluorescent tagging efficiency of specific terminal regions of the native proteins of interest (NPIs). In this study, the highly sensitive fluorescence imaging of single NPIs was demonstrated using a eukaryotic translation mechanism involving a free carboxyl group of a cell-permeable fluorescent dye. In living cells, the carboxyl group of cell-permeable fluorescent dyes reacted with the lysine residues of acceptor peptides (AP or AVI-Tag). Genetically encoded recognition demonstrated that the efficiency of fluorescence labeling was nearly 100%. Nickel-nitrilotriacetic acid (Ni-NTA) beads bound efficiently to a single NPI for detection in a cell without purification. Our labeling approach satisfied the necessary conditions for measuring fluorescently labeled NPI using universal carboxyl fluorescent dyes. This approach is expected to be useful for resolving complex biological/ecological issues and robust single-molecule analyses of dynamic processes, in addition to applications in ultra-sensitive NPIs detection using nanotechnology.
Collapse
Affiliation(s)
- Jung Min Kim
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02842, Korea
- Correspondence: ; Tel.: +82-2-3290-4778
| | - Young-Mi Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| |
Collapse
|
10
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
11
|
Amar K, Wei F, Chen J, Wang N. Effects of forces on chromatin. APL Bioeng 2021; 5:041503. [PMID: 34661040 PMCID: PMC8516479 DOI: 10.1063/5.0065302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Chromatin is a unique structure of DNA and histone proteins in the cell nucleus and the site of dynamic regulation of gene expression. Soluble factors are known to affect the chromatin structure and function via activating or inhibiting specific transcription factors. Forces on chromatin come from exogenous stresses on the cell surface and/or endogenous stresses, which are regulated by substrate mechanics, geometry, and topology. Forces on chromatin involve direct (via adhesion molecules, cytoskeleton, and the linker of nucleoskeleton and cytoskeleton complexes) and indirect (via diffusion and/or translocation processes) signaling pathways to modulate levels of chromatin folding and deformation to regulate transcription, which is controlled by histone modifications and depends on magnitude, direction, rate/frequency, duration, and modes of stresses. The rapid force transmission pathway activates multiple genes simultaneously, and the force may act like a "supertranscription factor." The indirect mechanotransduction pathways and the rapid force transmission pathway together exert sustained impacts on the chromatin, the nucleus, and cell functions.
Collapse
Affiliation(s)
- Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|