1
|
Parsons AM, Ahsan N, Darling EM. Identifying Immunomodulatory Subpopulations of Adipose Stromal Vascular Fraction and Stem/Stromal Cells Through Single-Cell Transcriptomics and Bulk Proteomics. Stem Cell Rev Rep 2025:10.1007/s12015-025-10889-6. [PMID: 40366552 DOI: 10.1007/s12015-025-10889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
A primary therapeutic characteristic of mesenchymal stem/stromal cells (MSCs) is their immunomodulatory activity. Adipose-derived stem/stromal cells (ASCs) are an abundant and easily isolated source of MSCs shown to have high immunosuppressive activity, making them attractive for therapy. Understanding the heterogeneous immunomodulatory potential of ASCs within the stromal vascular fraction (SVF) of adipose tissue could better inform treatment strategies. In this study, we integrate single-cell RNA sequencing (scRNA seq) with bulk proteomics to characterize subpopulations of SVF-derived ASCs that are phenotypically similar to cytokine-licensed, cultured ASCs. To better define the licensing process, we present scRNA seq and bulk proteomics data of cultured (P2) ASCs exposed to inflammatory cytokines, showing enrichment of pathways related to inflammation and apoptosis that positively correlate to the cytokine-mediated, trajectory-derived pseudotime. Using the Scissor algorithm, we integrate the proteomics data with uncultured (P0) SVF scRNA seq data, identifying an ASC subpopulation that is phenotypically like the cytokine-stimulated ASCs (Scissor-positive). Interactome analysis identifies Scissor-positive ASCs as stress adaptive immune regulators that function through IL6 and broad SEMA4 interactions and higher Visfatin signaling, while Scissor-negative ASCs show strong signatures of ECM remodeling through FN1 and immunosuppression through THY1 and MIF signaling. Our multimodal, integrative approach enabled identification of previously unidentified, distinct ASC subpopulations with differing immunomodulatory phenotypes that are present in, and can potentially be selected from, P0 SVF ASCs.
Collapse
Affiliation(s)
- Adrienne M Parsons
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73104, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, University of Oklahoma, Norman, OK, 73104, USA
| | - Eric M Darling
- Department of Pathology and Laboratory Medicine, Brown University, 171 Meeting St, Providence, RI, 02912, USA.
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Orthopaedics, Brown University, Brown University, RI, 02912, USA.
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Lainscsek X, Kong W, Rütgen BC, Beck J, Brenig B, Nolte I, Murua Escobar H, Taher L. Transcriptomic profiling in canine B-cell lymphoma supports a synergistic effect of BTK and PI3K inhibitors. Front Vet Sci 2025; 12:1577028. [PMID: 40351764 PMCID: PMC12063356 DOI: 10.3389/fvets.2025.1577028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction B-cell receptor (BCR) signaling has revealed itself as a critical pathway in the pathogenesis of B-cell lymphoma. Within this pathway, the inhibition of Bruton's tyrosine kinase (BTK) or Phosphoinositide 3-kinases (PI3Ks) alone presents encouraging efficacy in the treatment of certain both canine and human hematological malignancies. Methods Here we characterized the effects of the BTK inhibitor Ibrutinib and the PI3K inhibitor AS-605240 as single and combined agents in the canine pre-clinical diffuse large B cell lymphoma (DLBCL) model CLBL-1 by assaying cell proliferation and metabolic activity, and performing RNA-seq to measure gene expression changes. Results We found 2,336 differentially expressed genes (DEGs) across all treatment types and time points relative to the control. The largest number of DEGs were induced by the combination of Ibrutinib and AS-605240. These genes were involved in adaptive immune response, leukotriene D4 metabolic and terms related to regulation of GTP and GTPase mediated signal transduction. Weighted gene co-expression network analysis (WGCNA) detected nine gene modules, five of which were associated with treatment response. Eighteen-percent of genes within these modules were also differentially expressed. Notably, we observed one module that was exclusively associated with the combined treatment whose gene members were related to cellular metabolism, homeostasis signaling, and protein synthesis and regulation. Conclusion Narrowing in on highly connected genes of modules associated with treatment response with large fold changes across treatments which play roles in the main targeted pathways identified PAG1, PRKAR2A, ACACA, FOS, and PRKCA as potential primary candidates of the synergistic treatment effect.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Weibo Kong
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Barbara C. Rütgen
- Department for Pathobiology, Clinical Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hugo Murua Escobar
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Institute of Medical Genetics, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Moore EK, Strazza M, Hu X, Tymm C, Paiola M, Shannon MJ, Xie X, Bukhari S, Lerrer S, Mace EM, Winchester R, Mor A. PAG orchestrates T cell immune synapse function by binding to actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625440. [PMID: 39677716 PMCID: PMC11642767 DOI: 10.1101/2024.11.29.625440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many immunotherapies impact T cell function by impacting the immune synapse. While immunotherapy is extremely successful in some patients, in many others, it fails to help or causes complications, including immune-related adverse events. Phosphoprotein Associated with Glycosphingolipid Rich Microdomains 1 (PAG) is a transmembrane scaffold protein with importance in T cell signaling. PAG has 10 tyrosine phosphorylation sites where many kinases and phosphatases bind. PAG is palmitoylated, so it localizes in lipid rafts of the membrane, and contains a C-terminal PDZ domain to link to the actin cytoskeleton. As a link between signaling-protein-rich membrane regions and the actin cytoskeleton, PAG is an exciting and novel target for manipulating immune function. Here, we sought to determine if PAG works with actin to control T cell synapse organization and function. We found that PAG and actin dynamics are tightly coordinated during synapse maturation. A PDZ domain mutation disrupts the PAG-actin interaction, significantly impairing synapse formation, stability, and function. To assess the impact of the PDZ mutation functionally in vivo, we employed a mouse model of type IV hypersensitivity and an OVA-tumor mouse model. In both systems, mice with T cells expressing PDZ-mutant PAG had diminished immune responses, including impaired cytotoxic function. These findings highlight the importance of the PAG-actin link for effective T cell immune synapse formation and function. The results of our study suggest that targeting PAG is a promising approach for modulating immune responses and treating immune-related diseases. One Sentence Summary Adaptor protein PAG links to the actin cytoskeleton, and this link is essential for T cell synapse formation and cytotoxic function.
Collapse
|
4
|
Sun Y, Yang X, Guan S, Ma T, Jiang Z, Gao M, Xu Y, Cong B. The role of phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) in regulating the progression of oral squamous cell carcinoma. Arch Oral Biol 2023; 156:105810. [PMID: 37852106 DOI: 10.1016/j.archoralbio.2023.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE The aim of this study was to explore the role of the tumor suppressor phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) on oral squamous cell carcinoma (OSCC) and its molecular mechanism. DESIGN Immunohistochemistry detected the expression of PAG1 in normal and tumor tissues. The PAG1 overexpressed OSCC cell lines were constructed by lentivirus transfection. Cell Counting Kit-8 assay (CCK-8), clone formation and flow cytometry evaluated the impact of PAG1 on the proliferation and apoptosis of OSCC cells. RNA sequencing (RNA-seq) detected the changes in intracellular genes, and transmission electron microscope (TEM) was used to compare the number of autophagosomes in OSCC cells between Negative and PAG1 group. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot were used to determine the expression of signaling pathway-related mRNA and proteins respectively. RESULTS In contrast to the normal tissues, PAG1 expression was significantly downregulated in tumor tissues. Treatment with lentivirus transfection, the expression of PAG1 in the OSCC cell lines was increase. Notably, transfected with PAG1-overexpressing lentivirus cells inhibited the proliferation of OSCC cells and promoted OSCC cells apoptosis. RNA-seq revealed that PAG1 mainly modulated the mitophagy and autophagy pathway, and many autophagosomes were observed in the PAG1 group using TEM. Mechanistically, we found that PAG1 upregulated the expression of autophagy related factors through inhibiting PI3K/Akt/mTOR signal pathway activation. CONCLUSION Overexpression of PAG1 inhibited OSCC progression by activating autophagy, its mechanism might be related to inhibition of PI3K/Akt/mTOR signal pathway phosphorylation.
Collapse
Affiliation(s)
- Yu Sun
- Medical College, Qingdao University, Qingdao 266071, China
| | - Xinting Yang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Shulong Guan
- Department of Surgery, Qingdao Shinan District People's Hospital, Qingdao 266520, China
| | - Tengyu Ma
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Zhou Jiang
- Department of Reproductive, Women and Children's Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Meihua Gao
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Yingjie Xu
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Beibei Cong
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| |
Collapse
|
5
|
Ross KE, Zhang G, Akcora C, Lin Y, Fang B, Koomen J, Haura EB, Grimes M. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol 2023; 19:e1010690. [PMID: 36996232 PMCID: PMC10089347 DOI: 10.1371/journal.pcbi.1010690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.
Collapse
Affiliation(s)
- Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Cuneyt Akcora
- Department of Computer Science and Statistics, University of Manitoba, Winnipeg, Manitoba Canada
| | - Yu Lin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mark Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
6
|
Xie J, Chen L, Cao Y, Ma C, Zhao W, Li J, Yao W, Hu Y, Wang M, Shi J. Single cell sequencing analysis constructed the N7-methylguanosine (m7G)-related prognostic signature in uveal melanoma. Aging (Albany NY) 2023; 15:2082-2096. [PMID: 36920166 PMCID: PMC10085590 DOI: 10.18632/aging.204592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Uveal melanoma is a highly malignant tumor in the eye. Its recurrence and metastasis are common, and the prognosis is poor. METHODS The transcriptome data of UVM were downloaded from TCGA database, and the single cell sequencing dataset GSE139829 was downloaded from GEO database. Weighted co-expression network analysis was used to explore the modules associated with m7G. Lasso regression was used to construct M7G-related prognostic signature. Immune infiltration analysis was used to explore the significance of the model in the tumor immune microenvironment. Finally, cell assays were used to explore the function of key genes in the MUM-2B and OCM-1 cell lines of UVM. RESULTS The prognostic signature was constructed by Cox regression and Lasso regression. Patients could be divided into high-risk group and low-risk group by this signature, and the high-risk group had worse prognosis (P<0.05). Cell experiments showed that the proliferation, invasion and migration ability of UVM cell lines were significantly decreased after the knockdown of PAG1, a key gene in signature, which proved that PAG1 might be a potential target of UVM. CONCLUSIONS Our study explored the significance of m7G in UVM, provided biomarkers for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Hepatobiliary Surgery, Jiaxing First Hospital, Jiaxing 314001, Zhejiang, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, China
| | - Wenhu Zhao
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - JinJing Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, China
| | - Wen Yao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Ming Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
7
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
8
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Zhai Y, Yang J, Zhang J, Yang J, Li Q, Zheng T. Src-family Protein Tyrosine Kinases: A promising target for treating Cardiovascular Diseases. Int J Med Sci 2021; 18:1216-1224. [PMID: 33526983 PMCID: PMC7847615 DOI: 10.7150/ijms.49241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
The Src-family protein tyrosine kinases (SFKs), a subfamily of non-receptor tyrosine kinases, are ubiquitously expressed in various cell types. Numerous studies have suggested that SFKs are related to signal transduction in major cardiac physiological and pathological processes, it is the activity of SFKs that is connected with the maintenance of cardiovascular homeostasis. Upon stimulation of various injury factors or stress, the phosphorylation state of SFKs is changed, which has been found to modulate different cardiac pathological conditions, such as hypertension, coronary heart disease, ischemic heart disease, myocardial ischemia-reperfusion injury, arrhythmia and cardiomyopathy via regulating cell growth, differentiation, movement and function, electrophysiologic signals. This review summarizes the basic information about SFKs, updates its role in the different processes underlying the development of multiple cardiovascular diseases (CVDs), and highlights their potential role as disease biomarkers and therapeutic targets, which would help understand the pathophysiology of CVDs and promote the further potential clinical adhibition.
Collapse
Affiliation(s)
- Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
- Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
- Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
| | - Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
- Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Tao Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
- Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| |
Collapse
|