1
|
Johnson R, Caggia S, Khan SA. Gα i2 Induces Cell Migration in PC3 Prostate Cancer Cells in the Absence of Rac1 Activation. Int J Mol Sci 2025; 26:2663. [PMID: 40141305 PMCID: PMC11941931 DOI: 10.3390/ijms26062663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Metastatic prostate cancer occurs when the tumor spreads from the prostate gland to other parts of the body. Previous studies have shown that Gαi2, a subunit of the heterotrimeric G protein complex, plays a critical role in inducing cell migration and invasion in prostate cancer cells in response to diverse stimuli. Rac1 is a small rho-GTPase, which is activated by the phosphoinositide 3-kinase (PI3K)/AKT pathway and plays an essential role during cell migration. Previous studies have shown that the knockdown of Gαi2 attenuates cell migration without causing any reduction in basal Rac1 activity in both PC3 and DU145 cells, and has only marginal effects on the epidermal growth facotor (EGF)-induced increase in Rac1 activity. Therefore, Gαi2 may be involved in the regulation of cell motility and invasion independently or downstream of Rac1 activation. In this study, we investigated the possible mechanism of Gαi2 at the level of the Rac1-dependent activation of Wiskott-Aldrich Syndrome Protein)-family verprolin homologous protein2 (Wave2) and actin related protein 2/3 (Arp 2/3) proteins, downstream effectors of activated Rac1. PC3 cells with a stable overexpression of constitutively active Rac1 were transfected with control siRNA or Gαi2 siRNA to knockdown endogenous Gαi2 expression. Western blot analysis showed that the Rac1-dependent activation of Wave2 was impaired in the absence of Gαi2. The overexpression of constitutively active Gαi2 (Gαi2-Q205L) in PC3 cells significantly increased cell migration compared to cells transfected with control plasmids. In the parallel experiments, a specific Gαi2 inhibitor blocked Giα2-Q205L-induced cell migration in PC3 cells. Furthermore, the Rac1 inhibitor did not block increased cell migration in PC3 cells overexpressing constitutively active Gαi2. We conclude that activated Gαi2 plays a crucial role in cell migration in prostate cancer cells independent of Rac1 activation.
Collapse
Affiliation(s)
- Rarnice Johnson
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Dr, Atlanta, GA 30314, USA; (R.J.); (S.C.)
| | - Silvia Caggia
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Dr, Atlanta, GA 30314, USA; (R.J.); (S.C.)
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Coral Gables, FL 33101, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Dr, Atlanta, GA 30314, USA; (R.J.); (S.C.)
| |
Collapse
|
2
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
4
|
AKBA Promotes Axonal Regeneration via RhoA/Rictor to Repair Damaged Sciatic Nerve. Int J Mol Sci 2022; 23:ijms232415903. [PMID: 36555556 PMCID: PMC9783960 DOI: 10.3390/ijms232415903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The existing studies by our team demonstrated the pro-recovery effect of 3-Acetyl-11-keto-beta-boswellic acid (AKBA) on a sciatic nerve injury. To further investigate the role of AKBA in peripheral nerve injury repair, The TMT quantitative proteomics technique was used to obtain differentially significant proteins in a Sham group, Model group, and AKBA group. After that, three time points (5, 14, and 28 d) and four groups (Sham + AKBA, Sham, Model, and AKBA) were set up, and immunoblotting, immunofluorescence, and cellular assays were applied to investigate the expression of CDC42, Rac1, RhoA, and Rictor in the sciatic nerve at different time points for each group in more depth. The results showed that AKBA enriched the cellular components of the myelin sheath and axon regeneration after a sciatic nerve injury and that AKBA upregulated CDC42 and Rac1 and downregulated RhoA expression 5 d after a sciatic nerve injury, promoting axon regeneration and improving the repair of a sciatic nerve injury in rats. Rictor is regulated by AKBA and upregulated in PC12 cells after AKBA action. Our findings provide a new basis for AKBA treatment of a peripheral nerve injury.
Collapse
|
5
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Yamada KM, Doyle AD, Lu J. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol 2022; 32:883-895. [PMID: 35410820 PMCID: PMC9464680 DOI: 10.1016/j.tcb.2022.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/03/2023]
Abstract
Tissues consist of cells and their surrounding extracellular matrix (ECM). Cell-ECM interactions play crucial roles in embryonic development, differentiation, tissue remodeling, and diseases including fibrosis and cancer. Recent research advances in characterizing cell-matrix interactions include detailed descriptions of hundreds of ECM and associated molecules, their complex intermolecular interactions in development and disease, identification of distinctive modes of cell migration in different 3D ECMs, and new insights into mechanisms of organ formation. Exploring the roles of the physical features of different ECM microenvironments and the bidirectional regulation of cell signaling and matrix organization emphasize the dynamic nature of these interactions, which can include feedback loops that exacerbate disease. Understanding mechanisms of cell-matrix interactions can potentially lead to targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaoyang Lu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells 2022; 11:cells11111806. [PMID: 35681501 PMCID: PMC9180445 DOI: 10.3390/cells11111806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Much remains to be learned about the molecular mechanisms underlying a class of human disorders called actinopathies. These genetic disorders are characterized by loss-of-function mutations in actin-associated proteins that affect immune cells, leading to human immunopathology. However, much remains to be learned about how cytoskeletal dysregulation promotes immunological dysfunction. The current study reveals that the macrophage actin cytoskeleton responds to LPS/IFNγ stimulation in a biphasic manner that involves cellular contraction followed by cellular spreading. Myosin II inhibition by blebbistatin blocks the initial contraction phase and lowers iNOS protein levels and nitric oxide secretion. Conversely, conditional deletion of Arp2/3 complex in macrophages attenuates spreading and increases nitric oxide secretion. However, iNOS transcription is not altered by loss of myosin II or Arp2/3 function, suggesting post-transcriptional regulation of iNOS by the cytoskeleton. Consistent with this idea, proteasome inhibition reverses the effects of blebbistatin and rescues iNOS protein levels. Arp2/3-deficient macrophages demonstrate two additional phenotypes: defective MHCII surface localization, and depressed secretion of the T cell chemokine CCL22. These data suggest that interplay between myosin II and Arp2/3 influences macrophage activity, and potentially impacts adaptive-innate immune coordination. Disrupting this balance could have detrimental impacts, particularly in the context of Arp2/3-associated actinopathies.
Collapse
|
8
|
Wang SR, Rathor N, Kwon MS, Xiao L, Chung HK, Turner DJ, Wang JY, Rao JN. miR-195 Regulates Intestinal Epithelial Restitution after Wounding by altering Actin-Related Protein-2 Translation. Am J Physiol Cell Physiol 2022; 322:C712-C722. [PMID: 35235424 PMCID: PMC8977142 DOI: 10.1152/ajpcell.00001.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early gut epithelial restitution reseals superficial wounds after acute injury, but the exact mechanism underlying this rapid mucosal repair remains largely unknown. MicroRNA-195 (miR-195) is highly expressed in the gut epithelium and involved in many aspects of mucosal pathobiology. Actin-related proteins (ARPs) are key components essential for stimulation of actin polymerization and regulate cell motility. Here we reported that miR-195 modulates early intestinal epithelial restitution by altering ARP-2 expression at the translation level. MiR-195 directly interacted with the ARP-2 mRNA, and ectopically overexpressed miR-195 decreased ARP-2 protein without effect on its mRNA content. In contrast, miR-195 silencing by transfection with the anti-miR-195 increased ARP-2 protein expression. Decreased ARP-2 levels by miR-195 were associated with an inhibition of early epithelial restitution, as indicated by a decrease in cell migration over the wounded area. Elevation of cellular ARP-2 levels by transfection with its transgene restored cell migration after wounding in cells overexpressing miR-195. Polyamines were found to decrease miR-195 abundance and enhanced ARP-2 translation, thus promoting epithelial restitution after wounding. Moreover, increasing the levels of miR-195 disrupted F-actin cytoskeleton organization, which was prevented by ARP2 overexpression. These results indicate that miR-195 inhibits early epithelial restitution by decreasing ARP-2 translation and that miR-195 expression is negatively regulated by cellular polyamines.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States.,Cell Biology Group, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| |
Collapse
|
9
|
Jones TM, Marks PC, Cowan JM, Kainth DK, Petrie RJ. Cytoplasmic pressure maintains epithelial integrity and inhibits cell motility. Phys Biol 2021; 18:10.1088/1478-3975/ac267a. [PMID: 34521072 PMCID: PMC8591555 DOI: 10.1088/1478-3975/ac267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Cytoplasmic pressure, a function of actomyosin contractility and water flow, can regulate cellular morphology and dynamics. In mesenchymal cells, cytoplasmic pressure powers cell protrusion through physiological three-dimensional extracellular matrices. However, the role of intracellular pressure in epithelial cells is relatively unclear. Here we find that high cytoplasmic pressure is necessary to maintain barrier function, one of the hallmarks of epithelial homeostasis. Further, our data show that decreased cytoplasmic pressure facilitates lamellipodia formation during the epithelial to mesenchymal transition (EMT). Critically, activation of the actin nucleating protein Arp2/3 is required for the reduction in cytoplasmic pressure and lamellipodia formation in response to treatment with hepatocyte growth factor (HGF) to induce EMT. Thus, elevated cytoplasmic pressure functions to maintain epithelial tissue integrity, while reduced cytoplasmic pressure triggers lamellipodia formation and motility during HGF-dependent EMT.
Collapse
Affiliation(s)
- Tia M. Jones
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Pragati C. Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|