1
|
Ramos R, Vinyals A, Campos-Martin R, Cabré E, Bech JJ, Vaquero J, Gonzalez-Sanchez E, Bertran E, Ferreres JR, Lorenzo D, De La Torre CG, Fabregat I, Caminal JM, Fabra À. New Insights into the Exosome-Induced Migration of Uveal Melanoma Cells and the Pre-Metastatic Niche Formation in the Liver. Cancers (Basel) 2024; 16:2977. [PMID: 39272836 PMCID: PMC11394004 DOI: 10.3390/cancers16172977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
UM is an aggressive intraocular tumor characterized by high plasticity and a propensity to metastasize in the liver. However, the underlying mechanisms governing liver tropism remain poorly understood. Given the emerging significance of exosomes, we sought to investigate the contribution of UM-derived exosomes to specific steps of the metastatic process. Firstly, we isolated exosomes from UM cells sharing a common genetic background and different metastatic properties. A comparison of protein cargo reveals an overrepresentation of proteins related to cytoskeleton remodeling and actin filament-based movement in exosomes derived from the parental cells that may favor the detachment of cells from the primary site. Secondly, we assessed the role of macrophages in reprogramming the HHSCs by exosomes. The activation of HHSCs triggered a pro-inflammatory and pro-fibrotic environment through cytokine production, upregulation of extracellular matrix molecules, and the activation of signaling pathways. Finally, we found that activated HHSCs promote increased adhesion and migration of UM cells. Our findings shed light on the pivotal role of exosomes in pre-metastatic niche construction in the liver.
Collapse
Affiliation(s)
- Raquel Ramos
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Antònia Vinyals
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Eduard Cabré
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Joan Josep Bech
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Physiological Sciences, Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Josep Ramon Ferreres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- Dermatology Service, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Daniel Lorenzo
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Carolina G De La Torre
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Jose Maria Caminal
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Àngels Fabra
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Moss CE, Johnston SA, Kimble JV, Clements M, Codd V, Hamby S, Goodall AH, Deshmukh S, Sudbery I, Coca D, Wilson HL, Kiss-Toth E. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep 2024; 43:114073. [PMID: 38578825 DOI: 10.1016/j.celrep.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.
Collapse
Affiliation(s)
- Charlotte E Moss
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Joshua V Kimble
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Martha Clements
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Hamby
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sumeet Deshmukh
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Daniel Coca
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Department of Autonomic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK.
| | - Endre Kiss-Toth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
4
|
Li Y, Zhu T, Yang J, Zhang Q, Xu S, Ge S, Jia R, Zhang J, Fan X. EHMT2 promotes tumorigenesis in GNAQ/11-mutant uveal melanoma via ARHGAP29-mediated RhoA pathway. Acta Pharm Sin B 2024; 14:1187-1203. [PMID: 38486999 PMCID: PMC10935147 DOI: 10.1016/j.apsb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 03/17/2024] Open
Abstract
Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| |
Collapse
|
5
|
Onken MD, Erdmann-Gilmore P, Zhang Q, Thapa K, King E, Kaltenbronn KM, Noda SE, Makepeace CM, Goldfarb D, Babur Ö, Townsend RR, Blumer KJ. Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics 2023; 22:100649. [PMID: 37730182 PMCID: PMC10616553 DOI: 10.1016/j.mcpro.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA.
| | | | - Qiang Zhang
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kisan Thapa
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily King
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sarah E Noda
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Carol M Makepeace
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Kim J, Mooren OL, Onken MD, Cooper JA. Septin and actin contributions to endothelial cell-cell junctions and monolayer integrity. Cytoskeleton (Hoboken) 2023; 80:228-241. [PMID: 36205643 PMCID: PMC10079785 DOI: 10.1002/cm.21732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
Septins in endothelial cells (ECs) have important roles supporting the integrity of the endothelial monolayer. Cell-cell junctions in EC monolayers are highly dynamic, with continuous retractions and protrusions. Depletion of septins in ECs leads to disruption of cell-cell junctions, which are composed of VE-cadherin and other junctional proteins. In EC monolayers, septins are concentrated at the plasma membrane at sites of cell-cell contact, in curved- and scallop-shaped patterns. These membrane-associated septin accumulations are located in regions of positive membrane curvature, and those regions are often associated with and immediately adjacent to actin-rich protrusions with negative membrane curvature. EC septins associate directly with plasma membrane lipids, based on findings with site-specific mutations of septins in ECs, which is consistent with biochemical and cell biological studies in other systems. Loss of septins leads to disruption of the EC monolayer, and gaps form between cells. The number and breadth of cell-cell contacts and junctions decreases, and the number and frequency of retractions, ruffles, and protrusions at cell edges also decreases. In addition, loss of septins leads to decreased amounts of F-actin at the cortical membrane, along with increased amounts of F-actin in stress fibers of the cytoplasm. Endothelial monolayer disruption from loss of septins is also associated with decreased transendothelial electric resistance (TEER) and increased levels of transendothelial migration (TEM) by immune and cancer cells, owing to the gaps in the monolayer. A current working model is that assembly of septin filaments at regions of positive membrane curvature contributes to a mechanical footing or base for actin-based protrusive forces generated at adjoining regions of the membrane. Specific molecular interactions between the septin and actin components of the cytoskeleton may also be important contributors. Regulators of actin assembly may promote and support the assembly of septin filaments at the membrane, as part of a molecular feedback loop between the assembly of septin and actin filaments.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
7
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
8
|
Zeng C, Long M, Lu Y. Monensin synergizes with chemotherapy in uveal melanoma through suppressing RhoA. Immunopharmacol Immunotoxicol 2023; 45:35-42. [PMID: 36043455 DOI: 10.1080/08923973.2022.2112219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Uveal melanoma (UM) is the common primary cancer of the eye and new treatments are needed. Substantial evidence has shown that an antibiotic monensin is an attractive candidate for the development of anti-cancer drug. In this study, we investigated the potential of repositioning monensin for the treatment of UM in the pre-clinical setting. MATERIALS AND METHODS Cellular activity assays were performed using multiple cell lines representing UM models with different cellular origins and genetic profiling and normal cells as control. Combination studies were performed using Chou-Talalay method. Mechanism studies were performed using immunoblotting and ELISA. RESULTS Monensin was effective against all tested UM cell lines and less effective against normal fibroblast cells. Monensin induced G0/G1 arrest and thus decreased S phase, leading to UM cell growth inhibition. It also inhibited migration and induced apoptosis in UM cells. In addition, the combination of monensin and dacarbazine was synergistic in targeting UM cells. Our mechanistic studies showed that monensin specifically decreased activity of RhoA without affecting other small GTPases, such as Ras and Rac1. Consistently, monensin decreased phosphorylation of downstream effectors of RhoA signaling, including ROCK, MYPT1 and MLC. Rescue studies using RhoA activator calpeptin showed that calpeptin significantly abolished the inhibitory effects of monensin on RhoA activity, proliferation, migration and survival, confirming that RhoA is the target of monensin in UM cells. CONCLUSIONS Our study demonstrates that monensin is a potent inhibitor of UM and synergizes with chemotherapy, via suppressing RhoA activity and RhoA-mediated signaling. Our findings suggest that monensin may be a potential lead compound for further development into a drug for UM treatment.
Collapse
Affiliation(s)
- Chaoxia Zeng
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, PR China
| | - Mingxia Long
- Department of Nursing, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, PR China
| | - Ying Lu
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Third Hospital -Tongren Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
9
|
Wang T, Zhu T, Zhang Y, Bai J, Xue Y, Xu G, Lu L, Peng Q. Pan-cancer analysis of the prognostic and immunological role of BRCA1-associated protein 1 gene (BAP1): friend or foe? Gene X 2022; 840:146765. [PMID: 35905855 DOI: 10.1016/j.gene.2022.146765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND BRCA1-associated protein 1 gene (BAP1) plays a key role in some cancers. However, it has not yet been elucidated whether BAP1 modulates the pathogenesis and progression of human cancers through some common cellular and molecular mechanisms, and a pan-cancer analysis for the roles of BAP1 has not yet been conducted. METHODS A systematic assessment of the BAP1 gene was presented using bioinformatics analysis and R software. Based on gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, differential expression of BAP1, survival prognosis and genetic alterations of BAP1, correlations between BAP1 expression and immune infiltrates, enrichment analysis and receiver operating curves (ROC) were performed across 33 TCGA cancers. RESULTS BAP1 was highly expressed in several cancers and high BAP1 expression resulted in different survival prognoses. BAP1 DNA methylation status was changed in uveal melanoma (UVM) cases and a high level of BAP1 phosphorylation was found at the S292 locus in several cancers (colon cancer, lung adenocarcinoma, breast cancer, ovarian cancer, and uterine cancer). The statistically significant correlations of BAP1 expression and immune infiltration may contribute to the prognostic survivals in several cancers including UVM, skin cutaneous melanoma (SKCM), and lung adenocarcinoma (LUAD). Additionally, the correlations between BAP1 expression and tumor mutation burden (TMB)/microsatellite instability (MSI) across TCGA cancers were also explored. Finally, the analysis revealed that BAP1 expression level had high sensitivity and specificity for liver hepatocellular carcinoma (LIHC), kidney renal clear cell carcinoma (KIRC), and pancreatic adenocarcinoma (PAAD) patients. CONCLUSION This study has revealed statistically significant correlations of BAP1 expression with survival analysis, DNA methylation, protein phosphorylation, genetic alteration, and immune infiltration across multiple TCGA cancers, suggesting that BAP1 may potentially serve as a potential therapeutic target and prognostic biomarker for several cancers.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Tong Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China
| | - Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Guotong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Pharmacology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China.
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China.
| |
Collapse
|
10
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
11
|
Rossi E, Croce M, Reggiani F, Schinzari G, Ambrosio M, Gangemi R, Tortora G, Pfeffer U, Amaro A. Uveal Melanoma Metastasis. Cancers (Basel) 2021; 13:5684. [PMID: 34830841 PMCID: PMC8616038 DOI: 10.3390/cancers13225684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) is characterized by relatively few, highly incident molecular alterations and their association with metastatic risk is deeply understood. Nevertheless, this knowledge has so far not led to innovative therapies for the successful treatment of UM metastases or for adjuvant therapy, leaving survival after diagnosis of metastatic UM almost unaltered in decades. The driver mutations of UM, mainly in the G-protein genes GNAQ and GNA11, activate the MAP-kinase pathway as well as the YAP/TAZ pathway. At present, there are no drugs that target the latter and this likely explains the failure of mitogen activated kinase kinase inhibitors. Immune checkpoint blockers, despite the game changing effect in cutaneous melanoma (CM), show only limited effects in UM probably because of the low mutational burden of 0.5 per megabase and the unavailability of antibodies targeting the main immune checkpoint active in UM. The highly pro-tumorigenic microenvironment of UM also contributes to therapy resistance. However, T-cell redirection by a soluble T-cell receptor that is fused to an anti-CD3 single-chain variable fragment, local, liver specific therapy, new immune checkpoint blockers, and YAP/TAZ specific drugs give new hope to repeating the success of innovative therapy obtained for CM.
Collapse
Affiliation(s)
- Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
| | - Michela Croce
- Laboratory of Biotherapies, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (R.G.)
| | - Francesco Reggiani
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
- Medical Oncology, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Marianna Ambrosio
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Rosaria Gangemi
- Laboratory of Biotherapies, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (R.G.)
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
- Medical Oncology, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Ulrich Pfeffer
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Adriana Amaro
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| |
Collapse
|
12
|
Hermes C, König GM, Crüsemann M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat Prod Rep 2021; 38:2276-2292. [PMID: 33998635 DOI: 10.1039/d1np00005e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to April 2021The bacterial cyclic depsipeptides FR900359 (FR) and YM-254890 (YM) were shown to selectively inhibit Gαq proteins with high potency and selectivity and have recently emerged as valuable pharmacological tools due to their effective mechanism of action. Here, we summarize important aspects of this small and specialized natural product family, for which we propose the name chromodepsins, starting from their discovery, producing organisms and structural variety. We then review biosynthesis, structure-activity relationships and ecological and evolutionary aspects of the chromodepsins. Lastly, we discuss their mechanism of action, potential medicinal applications and future opportunities and challenges for further use and development of these complex inhibitor molecules from nature.
Collapse
Affiliation(s)
- Cornelia Hermes
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Gabriele M König
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|