1
|
Kobayashi S, Yokoi T, Omata T, Yako H, Miyamoto Y, Yamauchi J. Claudin-11, a hypomyelinating leukodystrophy 22 (HLD22)-responsible protein, uniquely interacts with shroom-2 to change cell phenotypes. BBA ADVANCES 2025; 7:100159. [PMID: 40230506 PMCID: PMC11995805 DOI: 10.1016/j.bbadva.2025.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Oligodendroglial cells are a type of glial cell in the central nervous system (CNS) that wrap neuronal axons with differentiated plasma membranes known as myelin sheaths. While the physiological functions of oligodendrocytes, such as generating saltatory conduction and protecting neuronal axons, are well understood, the physiological and/or pathophysiological molecular mechanisms governing their differentiation before myelination remain unclear. In this study, we describe for the first time that claudin-11, a protein associated with hypomyelinating leukodystrophy 22 (HLD22), interacts with shroom-2, a presumable adaptor protein containing the PSD95, DLG1, and ZO-1 (PDZ) domain. Knockdown of claudin-11 using specific siRNA resulted in a decrease in morphological changes and marker proteins in the FBD-102b oligodendroglial model undergoing differentiation. Transfection of the C-terminal PDZ ligand sequence of claudin-11, which was found to interact with the PDZ domain of shroom-2, also reduced these phenotypic changes. The HLD22-associated mutated sequence in claudin-11 failed to interact with the PDZ domain of shroom-2. Furthermore, knockdown of shroom-2 or transfection of the PDZ domain of shroom-2, which is involved in the interaction with claudin-11, resulted in decreased morphological changes and marker protein expression. These changes were linked to the phosphorylation states of Akt kinase, a key signaling molecule in oligodendroglial cell differentiation and myelination. These results suggest that the interaction between claudin-11 and shroom-2 plays a key role in shaping cell morphology, providing insights into the molecular mechanisms underlying oligodendroglial differentiation before myelination, as well as potential pathological mechanisms associated with HLD22 at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takanori Yokoi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takeru Omata
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideji Yako
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
Pan Q, Jiang L, Xiong Y, Chao FL, Liu S, Zhang SS, Zhu L, Luo YM, Xiao Q, Tang J, Liang X, Tang Y, Zhou CN, Zhang L. Voluntary running exercise promotes maturation differentiation and myelination of oligodendrocytes around Aβ plaques in the medial prefrontal cortex of APP/PS1 mice. Brain Res Bull 2025; 220:111170. [PMID: 39675487 DOI: 10.1016/j.brainresbull.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Previous studies have reported that running exercise could improves myelinization in hippocampus. However, the effects of running exercise on the differentiation and maturation of oligodendrocytes, and myelination surrounding Aβ plaques in the medial prefrontal cortex (mPFC) of the Alzheimer's disease (AD) brain have not been reported. METHODS Forty 10-month-old male APP/PS1 AD mice were randomly divided into the AD group and the AD running (AD+RUN) group, while 20 age-matched wild-type littermate mice were included in the WT group. The running group received three-month voluntary running exercise in a running cage, while the AD and WT groups were untreated. After the exercise intervention, all mice were given behavioral tests. The total number of mature oligodendrocytes (CC1+) in the mPFC of mice was precisely quantified using unbiased stereology. Myelin basic protein (MBP) and Aβ plaque, as well as the fluorescence area of MBP surrounding Aβ plaques, and the density and morphology of PDGFα+ cells in the mPFC were analyzed using immunofluorescence. RESULTS The levels of working memory, cognitive memory, spatial learning and memory ability were decreased significantly in the AD group compared to the WT group, while these functions were significantly improved in the AD+RUN group compared to the AD group. The Aβ plaques in the mPFC were significantly reduced in the AD+RUN group compared to the AD group. The total number of CC1+ cells and the percentage of MBP fluorescence area surrounding Aβ plaques in the mPFC were significantly lower in the AD group compared to the WT group, but they were significantly higher in the AD+RUN group compared to the AD group. The density and branching complexity of PDGFα+ cells surrounding Aβ plaques in the mPFC were significantly higher in the AD group than in the WT group, while the AD+RUN group showed significantly lower density and branching complexity than the AD group. Changes in MBP expression around Aβ plaques, cell density and cell branching complexity of PDGFα+ cells around Aβ plaques were closely related to the number of Aβ plaques in mPFC, and they were also closely related to behavioral changes in mice. CONCLUSIONS Voluntary running exercise could reduce Aβ plaque deposition and promote the maturation and myelination capacity of oligodendrocytes surrounding Aβ plaques in the mPFC of AD mice, thereby improving the learning and memory abilities of APP/PS1 transgenic AD mice.
Collapse
Affiliation(s)
- Qing Pan
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yao Xiong
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Liu
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
3
|
Fukatsu S, Miyamoto Y, Oka Y, Ishibashi M, Shirai R, Ishida Y, Endo S, Katoh H, Yamauchi J. Investigating the Protective Effects of a Citrus Flavonoid on the Retardation Morphogenesis of the Oligodendroglia-like Cell Line by Rnd2 Knockdown. Neurol Int 2023; 16:33-61. [PMID: 38251051 PMCID: PMC10801557 DOI: 10.3390/neurolint16010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Recent discoveries suggest links between abnormalities in cell morphogenesis in the brain and the functional deficiency of molecules controlling signal transduction in glial cells such as oligodendroglia. Rnd2 is one such molecule and one of the Rho family monomeric GTP-binding proteins. Despite the currently known functions of Rnd2, its precise roles as it relates to cell morphogenesis and disease state remain to be elucidated. First, we showed that signaling through the loss of function of the rnd2 gene affected the regulation of oligodendroglial cell-like morphological differentiation using the FBD-102b cell line, which is often utilized as a differentiation model. The knockdown of Rnd2 using the clustered regularly interspaced palindromic repeats (CRISPR)/CasRx system or RNA interference was shown to slow morphological differentiation. Second, the knockdown of Prag1 or Fyn kinase, a signaling molecule acting downstream of Rnd2, slowed differentiation. Rnd2 or Prag1 knockdown also decreased Fyn phosphorylation, which is critical for its activation and for oligodendroglial cell differentiation and myelination. Of note, hesperetin, a citrus flavonoid with protective effects on oligodendroglial cells and neurons, can recover differentiation states induced by the knockdown of Rnd2/Prag1/Fyn. Here, we showed that signaling through Rnd2/Prag1/Fyn is involved in the regulation of oligodendroglial cell-like morphological differentiation. The effects of knocking down the signaling cascade molecule can be recovered by hesperetin, highlighting an important molecular structure involved in morphological differentiation.
Collapse
Affiliation(s)
- Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yu Oka
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Maki Ishibashi
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
| | - Yuki Ishida
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Shin Endo
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Hironori Katoh
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
4
|
Miyamoto Y, Hattori K, Yamauchi J. Defective oligodendrocyte differentiation by hypomyelinating leukodystrophy 13 (HLD13)-associated mutation of Hikeshi. Mol Genet Metab Rep 2023; 37:101017. [PMID: 37965292 PMCID: PMC10641311 DOI: 10.1016/j.ymgmr.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo, Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
6
|
Zhang S, Yuan F, Liu X, Liu Y. miR-33-5p Ameliorates β Cell Dysfunction and PI3K/AKT Signaling-Mediated Insulin Secretion in Diabetes via Targeting RND2. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1161.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
CRISPR/CasRx-Mediated RNA Knockdown Reveals That ACE2 Is Involved in the Regulation of Oligodendroglial Cell Morphological Differentiation. Noncoding RNA 2022; 8:ncrna8030042. [PMID: 35736639 PMCID: PMC9229887 DOI: 10.3390/ncrna8030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/05/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays a role in catalyzing angiotensin II conversion to angiotensin (1–7), which often counteracts the renin-angiotensin system. ACE2 is expressed not only in the cells of peripheral tissues such as the heart and kidney, but also in those of the central nervous system (CNS). Additionally, ACE2 acts as the receptor required for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose binding leads to endocytotic recycling and possible degradation of the ACE2 proteins themselves. One of the target cells for SARS-CoV-2 in the CNS is oligodendrocytes (oligodendroglial cells), which wrap neuronal axons with their differentiated plasma membranes called myelin membranes. Here, for the first time, we describe the role of ACE2 in FBD-102b cells, which are used as the differentiation models of oligodendroglial cells. Unexpectedly, RNA knockdown of ACE2 with CasRx-mediated gRNA or the cognate siRNA promoted oligodendroglial cell morphological differentiation with increased expression or phosphorylation levels of differentiation and/or myelin marker proteins, suggesting the negative role of ACE2 in morphological differentiation. Notably, ACE2′s intracellular region preferentially interacted with the active GTP-bound form of Ras. Thus, knockdown of ACE2 relatively increased GTP-bound Ras in an affinity-precipitation assay. Indeed, inhibition of Ras resulted in decreasing both morphological differentiation and expression or phosphorylation levels of marker proteins, confirming the positive role of Ras in differentiation. These results indicate the role of ACE2 itself as a negative regulator of oligodendroglial cell morphological differentiation, newly adding ACE2 to the list of regulators of oligodendroglial morphogenesis as well as of Ras-binding proteins. These findings might help us to understand why SARS-CoV-2 causes pathological effects in the CNS.
Collapse
|
8
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
9
|
Miyamoto Y, Torii T, Homma K, Oizumi H, Ohbuchi K, Mizoguchi K, Takashima S, Yamauchi J. The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin-2 in myelinating Schwann cells in mice. Sci Signal 2022; 15:eabi5276. [PMID: 35077201 DOI: 10.1126/scisignal.abi5276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mature myelin sheaths insulate axons to increase nerve conduction velocity and protect nerve fibers from stress and physical injury. In the peripheral nervous system, the myelin sheath is produced by Schwann cells. The guanine-nucleotide exchange factor cytohesin-2 activates the protein Arf6 to promote Schwann cell myelination. Here, we investigated the regulation of cytohesin-2 and found that the phosphorylation status of Tyr381 in cytohesin-2 is central to Schwann cell myelination. Knockin mice with a nonphosphorylatable Y381F mutation in cytohesin-2 exhibited reduced myelin thickness and decreased Arf6 activity in sciatic nerve tissue. In HEK293T cells, cytohesin-2 was dephosphorylated at Tyr381 by the protein tyrosine phosphatase PTP4A1, whereas phosphorylation at this site was maintained by interaction with the adaptor protein SH2B1. Schwann cell-specific knockdown of PTP4A1 in mice increased cytohesin-2 phosphorylation and myelin thickness. Conversely, Schwann cell-specific loss of SH2B1 resulted in reduced myelin thickness and decreased cytohesin-2 phosphorylation. Thus, a signaling unit centered on cytohesin-2-with SH2B1 as a positive regulator and PTP4A1 as a negative regulator-controls Schwann cell myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyotanabe, Kyoto 610-0394, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
10
|
Rnd3 is necessary for the correct oligodendrocyte differentiation and myelination in the central nervous system. Brain Struct Funct 2021; 227:829-841. [PMID: 34724108 DOI: 10.1007/s00429-021-02419-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
Rho small GTPases are proteins with key roles in the development of the central nervous system. Rnd proteins are a subfamily of Rho GTPases, characterized by their constitutive activity. Rnd3/RhoE is a member of this subfamily ubiquitously expressed in the CNS, whose specific functions during brain development are still not well defined. Since other Rho proteins have been linked to the myelination process, we study here the expression and function of Rnd3 in oligodendrocyte development. We have found that Rnd3 is expressed in a subset of oligodendrocyte precursor cells and of mature oligodendrocytes both in vivo and in vitro. We have analyzed the role of Rnd3 in myelination using mice lacking Rnd3 expression (Rnd3gt/gt mice), showing that these mice exhibit hypomyelination in the brain and a reduction in the number of mature and total oligodendrocytes in the corpus callosum and striatum. The mutants display a decreased expression of several myelin proteins and a reduction in the number of myelinated axons. In addition, myelinated axons exhibit thinner myelin sheaths. In vitro experiments using Rnd3gt/gt mutant mice showed that the differentiation of the precursor cells is altered in the absence of Rnd3 expression, suggesting that Rnd3 is directly required for the differentiation of oligodendrocytes and, in consequence, for the correct myelination of the CNS. This work shows Rnd3 as a new protein involved in oligodendrocyte maturation, opening new avenues to further study the function of Rnd3 in the development of the central nervous system and its possible involvement in demyelinating diseases.
Collapse
|