1
|
Stephens MC, Li J, Mair M, Moore J, Zhu K, Tarkunde A, Amoh B, Perez AM, Bhakare A, Guo F, Shulman JM, Al-Ramahi I, Botas J. Computational and functional prioritization identifies genes that rescue behavior and reduce tau protein in fly and human cell models of Alzheimer disease. Am J Hum Genet 2025; 112:1081-1096. [PMID: 40215969 DOI: 10.1016/j.ajhg.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 05/04/2025] Open
Abstract
Genome-wide association studies (GWASs) in Alzheimer disease (AD) have uncovered over 70 loci significantly associated with AD risk, but identifying the true causal gene(s) at these loci requires systematic functional validation that is rarely performed due to limitations of time and cost. Here, we integrate transcriptome-wide association study (TWAS) with colocalization analysis, fine-mapping, and additional annotation of AD GWAS variants to identify 123 genes at known and suggestive AD risk loci. A comparison with human AD brain transcriptome data confirmed that many of these candidate genes are dysregulated in human AD and correlate with neuropathology. We then tested all available orthologs in two well-established Drosophila AD models that express either wild-type tau or secreted β-amyloid (β42). Experimental perturbation of the 60 available candidates pinpointed 46 that modulated neuronal dysfunction in one or both fly models. The effects of 18 of these genes were concordant with the TWAS prediction, such that the direction of misexpression predicted to increase AD risk in humans exacerbated behavioral impairments in the AD fly models. Reversing the aberrant down- or upregulation of 11 of these genes (MTCH2, ELL, TAP2, HDC, DMWD, MYCL, SLC4A9, ABCA7, CSTF1, PTK2B, and CD2AP) proved neuroprotective in vivo. We further studied MTCH2 and found that it regulates steady-state tau protein levels in the Drosophila brain and reduces tau accumulation in human neural progenitor cells. This systematic, integrative approach effectively prioritizes genes at GWAS loci and reveals promising AD-relevant candidates for further investigation as risk factors or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan C Stephens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Jiayang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Justin Moore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Katy Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Akash Tarkunde
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Bismark Amoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Arya Bhakare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Fangfei Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Hassan HM, Abou-Hany HO, Shata A, Hellal D, El-Baz AM, ElSaid ZH, Haleem AA, Morsy NE, Abozied RM, Elbrolosy BM, Negm S, El-Kott AF, AlShehri MA, Khasawneh MA, Saifeldeen ER, Mahfouz MM. Vinpocetine and Lactobacillus Attenuated Rotenone-Induced Parkinson's Disease and Restored Dopamine Synthesis in Rats through Modulation of Oxidative Stress, Neuroinflammation, and Lewy Bodies Inclusion. J Neuroimmune Pharmacol 2025; 20:22. [PMID: 39954133 DOI: 10.1007/s11481-025-10176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is the main neurodegenerative disorder affecting motor activity, there are different pathophysiological pathways contributing to its development including oxidative stress, neuroinflammation, Lewy's bodies accumulation, and impaired autophagy. Vinpocetine is an herbal extract with antioxidant and anti-inflammatory activities that may counteract pathophysiologic neurodegeneration pathways. Moreover, Lactobacillus is a probiotic that can modulate the gut-brain axis and provide the body with the needed precursors of antioxidants and anti-inflammatory mediators. In the current study PD was induced experimentally in Sprague Dawley rats with rotenone (2.5 mg/kg, i.p, daily) for 60 days, vinpocetine; Vinpo (20 mg/kg, orally, daily) and Lactobacillus; Lacto (2.7 × 108 CFU/ml, orally, daily) were applied as protective treatment. Vinpocetine and Lactobacillus treatment significantly ameliorated motor function by increasing distance traveled and rearing frequency in the open field test with a concomitant increase in falling time from both the accelerating rotarod and the wire screen test. Moreover, vinpocetine and Lactobacillus treatment upregulates tyrosine hydroxylase expression (the rate-limiting enzyme in dopamine synthesis), leading to enhanced dopamine synthesis and improved dopaminergic function with regression of histopathological hallmarks. Antioxidant GSH levels were significantly increased after vinpocetine and Lactobacillus treatment with a significant decrease in MDA content in brain homogenates. Furthermore, vinpocetine and Lactobacillus treatment significantly decreased striatal inflammatory markers; nitrite, IL-1β and TNF-α. Proteinopathies were regressed with a substantial decrease in striatal α-synuclein and tau content. In conclusion, vinpocetine and Lactobacillus treatment reduced rotenone neurotoxicity with improved dopamine release and motor activity with correction of oxidative burden, neuro-inflammation, and proteinopathy.
Collapse
Affiliation(s)
- Hanan M Hassan
- Pharmacology and Biochemistry department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Hadeer O Abou-Hany
- Pharmacology and Biochemistry department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed Shata
- Clinical pharmacology department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Clinical Pharmacology department, Faculty of Medicine, Horus University-Egypt, 34518, New Damietta, Egypt
| | - Doaa Hellal
- Clinical pharmacology department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M El-Baz
- Microbiology and Immunology department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Zeinab H ElSaid
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira A Haleem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nesreen Elsayed Morsy
- Pulmonary Medicine Department, Faculty of Medicine, Mansoura University Sleep Center, Mansoura University, Mansoura, 35516, Egypt
| | - Rawan M Abozied
- Clinical pharmacy department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Bassant M Elbrolosy
- Clinical pharmacy department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Sally Negm
- Applied College, Health Specialties, Basic Sciences and Their Applications Unit, Mahayil Asir, King Khalid University, Abha, 62529, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamad A Khasawneh
- Department of Special Education, Faculty of Education, King Khalid University, Abha, Saudi Arabia
| | - Eman R Saifeldeen
- Department of hematology and immunology, faculty of medicine, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Marwa M Mahfouz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Menoufia University, Menoufia, 32951, Egypt
| |
Collapse
|
3
|
Li SY, Gong XY, Ndikuryayo F, Yang WC. The emerging role of oxygen redox in pathological progression of disorders. Ageing Res Rev 2025; 104:102660. [PMID: 39805473 DOI: 10.1016/j.arr.2025.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington disease, pose serious threats to human health, leading to substantial economic burdens on society and families. Despite extensive research, the underlying mechanisms driving these diseases remain incompletely understood, impeding effective diagnosis and treatment. In recent years, growing evidence has highlighted the crucial role of oxidative stress in the pathogenesis of various neurodegenerative diseases. However, there is still a lack of comprehensive reviews that systematically summarize the impact of mitochondrial oxidative stress on neurodegenerative diseases. This review aims to address this gap by summarizing the molecular mechanisms by which mitochondrial oxidative stress promotes the initiation and progression of neurodegenerative disorders. Furthermore, it discusses the potential of antioxidant-based therapeutic strategies for the treatment of these diseases. By shedding light on the role of mitochondrial oxidative stress in neurodegenerative diseases, this review not only serves as a valuable reference for further research on the disease mechanisms, but also offers novel perspectives for the treatment of these disorders.
Collapse
Affiliation(s)
- Shuang-Yu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Krzesinski BJ, Holub TJ, Gabani ZY, Margittai M. Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers. ACS Chem Neurosci 2025; 16:171-180. [PMID: 39714208 PMCID: PMC11740991 DOI: 10.1021/acschemneuro.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats. Distinctively, three-repeat Tau contains a single cysteine; four-repeat Tau contains two. Although there is evidence that the cysteines in pathological Tau filaments exist in the reduced form, very little is known about the alternative disulfide-bonded state. It is unclear whether it can exist nontransiently in the reducing environment of the cytosol. Such knowledge, however, is important as different redox states of Tau could modulate aggregation. To address this question, we transfected HEK293 cells expressing the P301S variant of four-repeat Tau with fibril seeds composed of compact, disulfide-bonded Tau monomers. In vitro, these fibrils are observed to recruit only compact Tau, but not Tau in which the cysteines are reduced or replaced by alanines or serines. In line with this characteristic, the fibrils dissociate when treated with a reducing agent. When offered to HEK293 cells, variant Tau protein is recruited to the seeds forming intracellular fibrils with the same seeding properties as the in vitro counterparts. Markedly, the proteins in these fibrils have a compact, disulfide-bonded configuration and dissociate upon reduction. These findings reveal that uptake of exogeneous fibril seeds triggers oxidation of Tau monomers, modulating intracellular aggregation.
Collapse
Affiliation(s)
- Brad J. Krzesinski
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Tyler J. Holub
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Zachariah Y. Gabani
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
5
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Snyder M, Liu YK, Shang R, Xu H, Thrift C, Chen X, Chen J, Kim KH, Qiu J, Bi P, Tao WA, Kuang S. LETMD1 regulates mitochondrial protein synthesis and import to guard brown fat mitochondrial integrity and function. iScience 2024; 27:110944. [PMID: 39398236 PMCID: PMC11467678 DOI: 10.1016/j.isci.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.
Collapse
Affiliation(s)
- Madigan Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Haowei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Charlie Thrift
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
7
|
Costa MFD, Rösler TW, Höglinger GU. Exploring the neuroprotective potential of Nrf2-pathway activators against annonacin toxicity. Sci Rep 2024; 14:20123. [PMID: 39209951 PMCID: PMC11362529 DOI: 10.1038/s41598-024-70837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Modulation of the Nrf2 pathway, a master regulator of the antioxidant response and cellular metabolism, has been suggested as a promising therapeutic strategy in tauopathies, a heterogeneous group of neurodegenerative disorders characterized by intracellular proteinaceous inclusions of abnormally phosphorylated tau. Here, we explored the neuroprotective potential of different Nrf2-pathway activators in human immortalized dopaminergic neurons against annonacin-induced toxicity, a mitochondrial inhibitor associated with a PSP-like syndrome and capable of mimicking tauopathy-like features. Interestingly, we observed heterogenous and compound-dependent neuroprotective effects among the different Nrf2-pathway activators. With the exception of Fyn inhibitors, all the selected Nrf2-pathway activators improved cell viability and the oxidative status, and reduced the annonacin-induced tau hyperphosphorylation and neurite degeneration, particularly the p62-activators. However, improvement of the impaired mitochondrial function was only observed by the Bach-1 inhibitor. Surprisingly, we found evidence that ezetimibe, an approved drug for hypercholesterolemia, prevents the transcriptional upregulation of 4R-tau triggered by annonacin insult. Overall, our results suggest that the neuroprotective effects of the Nrf2-pathway activators against annonacin toxicity may rely on the specific mechanism of action, intrinsic to each compound, and possibly on the concomitant modulation of additional signaling pathways. Further research will be needed to fully understand how synergistic modulation of metabolic adaptation and cell survival can be exploit to develop new therapeutical strategies for tauopathies and eventually other neurodegenerative diseases.
Collapse
Affiliation(s)
- Márcia F D Costa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Thomas W Rösler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Department of Neurology, Hannover Medical School, Hannover, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, LMU Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
8
|
Xie Y, Li X, Shi Q, Le L, Wang C, Xu H, Wu G, Du X, Chen Z. The synergistic effect of curcumin and mitoquinol mesylate on cognitive impairment and the neuropathology of Alzheimer's disease. Brain Res 2024; 1837:148959. [PMID: 38670478 DOI: 10.1016/j.brainres.2024.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Given the complexity and heterogeneity of Alzheimer's disease (AD) pathology, targeted monotherapy drugs may not be effective. Therefore, synergistic combination therapy of curcumin and Mito Q was proposed and evaluated in a triple-transgenic AD model mice (3 × Tg-AD mice). The cognitive ability was assessed using behavioral tests and typical pathological changes were observed through Western blotting and histological analysis. The results demonstrated a significant enhancement in cognitive ability along with the mitigation of typical AD pathological features such as Aβ aggregation, tau phosphorylation, and synaptic damage. Notably, the combination therapy demonstrated superior efficacy over individual drugs alone. These findings provide valuable insights for optimizing the development of AD drugs.
Collapse
Affiliation(s)
- Yongli Xie
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Xuexia Li
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shanxi, China
| | - Linfeng Le
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hao Xu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Guoli Wu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zetao Chen
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China.
| |
Collapse
|
9
|
Samanta S, Chakraborty S, Bagchi D. Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:20-32. [PMID: 37186678 DOI: 10.1080/27697061.2023.2203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Neurodegenerative diseases are a serious problem throughout the world. There are several causes of neurodegenerative diseases; these include genetic predisposition, accumulation of misfolded proteins, oxidative stress, neuroinflammation, and excitotoxicity. Oxidative stress increases the production of reactive oxygen species (ROS) that advance lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system (superoxide dismutase, catalase, peroxidase, and reduced glutathione) plays a crucial role in scavenging free radicals. An imbalance in the defensive actions of antioxidants and overproduction of ROS intensify neurodegeneration. The formation of misfolded proteins, glutamate toxicity, oxidative stress, and cytokine imbalance promote the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Antioxidants are now attractive molecules to fight against neurodegeneration. Certain vitamins (A, E, C) and polyphenolic compounds (flavonoids) show excellent antioxidant properties. Diet is the major source of antioxidants. However, diet medicinal herbs are also rich sources of numerous flavonoids. Antioxidants prevent ROS-mediated neuronal degeneration in post-oxidative stress conditions. The present review is focused on the pathogenesis of neurodegenerative diseases and the protective role of antioxidants. KEY TEACHING POINTSThis review shows that multiple factors are directly or indirectly associated with the pathogenesis of neurodegenerative diseases.Failure to cellular antioxidant capacity increases oxidative stress that intensifies neuroinflammation and disease progression.Different vitamins, carotenoids, and flavonoids, having antioxidant capacity, can be considered protective agents.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, New York, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
10
|
Kim M, Serwa RA, Samluk L, Suppanz I, Kodroń A, Stępkowski TM, Elancheliyan P, Tsegaye B, Oeljeklaus S, Wasilewski M, Warscheid B, Chacinska A. Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction. Nat Commun 2023; 14:4092. [PMID: 37433777 DOI: 10.1038/s41467-023-39642-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Minji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Kodroń
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M Stępkowski
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Ismail M, Kanapathipillai M. Amyloid-like RIP1/RIP3 RHIM Fragments' Characterization and Application as a Drug Depot. Molecules 2023; 28:1480. [PMID: 36771145 PMCID: PMC9918910 DOI: 10.3390/molecules28031480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Amyloid aggregates play a major role in diseases as well as in normal physiological function. Receptor-interacting protein kinases 1 and 3 (RIP1/RIP3) aggregates complexes in cellular necroptosis is one example of protein aggregation in normal cellular function. Although recently there have been several studies on full kinase proteins aggregation, the aggregation potential of small peptide sequences of RIP1/RIP3, the physicochemical properties, and the potential in biomedical applications have not been explored. Hence, in this paper, we study the aggregation propensity of peptides consisting of four and twelve amino acid sequences in the RHIM region of RIP1/RIP3 proteins that are known to drive the beta-sheet formation and the subsequent aggregation. The aggregation kinetics, physicochemical characterization, mechanosensitive properties, cellular effects, and potential as a cancer drug depot have been investigated. The results show that the number and concentration of amino acids play a role in amyloid-like aggregates' properties. Further, the aggregates when formulated with cisplatin-induced significant lung cancer cell toxicity compared to an equal amount of cisplatin with and without ultrasound. The study would serve as a platform for further investigation on RIP1/RIP3 peptide and protein aggregates, their role in multiple cellular functions and diseases, and their potential as drug depots.
Collapse
|
12
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Trushina E, Nguyen TKO, Trushin S. Modulation of Mitochondrial Function as a Therapeutic Strategy for Neurodegenerative Diseases. J Prev Alzheimers Dis 2023; 10:675-685. [PMID: 37874088 PMCID: PMC12023916 DOI: 10.14283/jpad.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Despite recent FDA approval of anti-amyloid antibodies for Alzheimer's Disease, strategies that target early molecular mechanisms and could delay or change the disease trajectory are still needed. Mitochondria emerge as a signaling organelle that could modulate multiple molecular mechanisms to enhance cellular bioenergetics and promote neuronal survival. Approaches to enhance mitochondrial function could promote healthy aging delaying the onset of age-related diseases such as Alzheimer's Disease. Some of these strategies have been recently tested in clinical trials. Emerging evidence demonstrates that in response to mild energetic stress, mitochondria could orchestrate a robust adaptive stress response activating multiple neuroprotective mechanism. The objective of this review is to highlight recent development of mitochondria-targeting therapeutics for neurodegenerative diseases, mitochondria complex I inhibitors in particular.
Collapse
Affiliation(s)
- E Trushina
- Eugenia Trushina, Ph.D., Mayo Clinic, 200 First Street SW, Guggenheim Building 1442B, Rochester, MN 55905, USA, Phone: 507-284-8197,
| | | | | |
Collapse
|
14
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
15
|
Meng-zhen S, Ju L, Lan-chun Z, Cai-feng D, Shu-da Y, Hao-fei Y, Wei-yan H. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022; 8:e11440. [DOI: 10.1016/j.heliyon.2022.e11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
16
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
17
|
Liu X, Ye M, Ma L. The emerging role of autophagy and mitophagy in tauopathies: From pathogenesis to translational implications in Alzheimer's disease. Front Aging Neurosci 2022; 14:1022821. [PMID: 36325189 PMCID: PMC9618726 DOI: 10.3389/fnagi.2022.1022821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting more than 55 million individuals worldwide in 2021. In addition to the "amyloid hypothesis," an increasing number of studies have demonstrated that phosphorylated tau plays an important role in AD pathogenesis. Both soluble tau oligomers and insoluble tau aggregates in the brain can induce structural and functional neuronal damage through multiple pathways, eventually leading to memory deficits and neurodegeneration. Autophagy is an important cellular response to various stress stimuli and can generally be categorized into non-selective and selective autophagy. Recent studies have indicated that both types of autophagy are involved in AD pathology. Among the several subtypes of selective autophagy, mitophagy, which mediates the selective removal of mitochondria, has attracted increasing attention because dysfunctional mitochondria have been suggested to contribute to tauopathies. In this review, we summarize the latest findings on the bidirectional association between abnormal tau proteins and defective autophagy, as well as mitophagy, which might constitute a vicious cycle in the induction of neurodegeneration. Neuroinflammation, another important feature in the pathogenesis and progression of AD, has been shown to crosstalk with autophagy and mitophagy. Additionally, we comprehensively discuss the relationship between neuroinflammation, autophagy, and mitophagy. By elucidating the underlying molecular mechanisms governing these pathologies, we highlight novel therapeutic strategies targeting autophagy, mitophagy and neuroinflammation, such as those using rapamycin, urolithin, spermidine, curcumin, nicotinamide, and actinonin, for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaolan Liu
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Meng Ye
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Liang Ma
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| |
Collapse
|
18
|
Epremyan KK, Goleva TN, Zvyagilskaya RA. Effect of Tau Protein on Mitochondrial Functions. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:689-701. [PMID: 36171651 DOI: 10.1134/s0006297922080028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is the most common age-related progressive neurodegenerative disorder of brain cortex and hippocampus leading to cognitive impairment. Accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles are believed to be the main hallmarks of the disease. Origin of Alzheimer's disease is not totally clear, multiple initiator factors are likely to exist. Intracellular impacts of Alzheimer's disease include mitochondrial dysfunction, oxidative stress, ER-stress, disruption of autophagy, severe metabolic challenges leading to massive neuronal apoptosis. Mitochondria are the key players in all these processes. This formed the basis for the so-called mitochondrial cascade hypothesis. This review provides current data on the molecular mechanisms of the development of Alzheimer's disease associated with mitochondria. Special attention was paid to the interaction between Tau protein and mitochondria, as well as to the promising therapeutic approaches aimed at preventing development of neurodegeneration.
Collapse
Affiliation(s)
- Khoren K Epremyan
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatyana N Goleva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|