1
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
2
|
Aoki K, Higuchi T, Akieda Y, Matsubara K, Ohkawa Y, Ishitani T. Mechano-gradients drive morphogen-noise correction to ensure robust patterning. SCIENCE ADVANCES 2024; 10:eadp2357. [PMID: 39546611 PMCID: PMC11567007 DOI: 10.1126/sciadv.adp2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Morphogen gradients instruct cells to pattern tissues. Although the mechanisms by which morphogens transduce chemical signals have been extensively studied, the roles and regulation of the physical communication between morphogen-receiver cells remain unclear. Here, we show that the Wnt/β-catenin-morphogen gradient, which patterns the embryonic anterior-posterior (AP) axis, generates intercellular tension gradients along the AP axis by controlling membrane cadherin levels in zebrafish embryos. This "mechano-gradient" is used for the cell competition-driven correction of noisy morphogen gradients. Naturally and artificially generated unfit cells, producing noisy Wnt/β-catenin gradients, induce local deformation of the mechano-gradients that activate mechanosensitive calcium channels in the neighboring fit cells, which then secrete annexin A1a to kill unfit cells. Thus, chemo-mechanical interconversion-mediated competitive communication between the morphogen-receiver cells ensures precise tissue patterning.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiki Higuchi
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Akieda
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kotone Matsubara
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka 812-0054, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Solomatina ES, Kovaleva AV, Tvorogova AV, Vorobjev IA, Saidova AA. Effect of Focal Adhesion Kinase and Vinculin Expression on Migration Parameters of Normal and Tumor Epitheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:474-486. [PMID: 38648767 DOI: 10.1134/s0006297924030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.
Collapse
Affiliation(s)
- Evgenia S Solomatina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia V Kovaleva
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Tvorogova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Ivan A Vorobjev
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
| | - Aleena A Saidova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
4
|
Lichtenberg JY, Ramamurthy E, Young AD, Redman TP, Leonard CE, Das SK, Fisher PB, Lemmon CA, Hwang PY. Leader cells mechanically respond to aligned collagen architecture to direct collective migration. PLoS One 2024; 19:e0296153. [PMID: 38165954 PMCID: PMC10760762 DOI: 10.1371/journal.pone.0296153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024] Open
Abstract
Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.
Collapse
Affiliation(s)
- Jessanne Y. Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ella Ramamurthy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Anna D. Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Trey P. Redman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Corinne E. Leonard
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Priscilla Y. Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|