1
|
Mul W, Mitra A, Prevo B, Peterman EJG. DYF-5 regulates intraflagellar transport by affecting train turnaround. Mol Biol Cell 2025; 36:ar53. [PMID: 40072497 DOI: 10.1091/mbc.e24-08-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Intraflagellar transport (IFT) coordinates the transport of cargo in cilia and is essential for ciliary function. CILK1 has been identified as a key regulator of IFT. The mechanism by which it acts has, however, remained unclear. In this study, we use fluorescence imaging and single-molecule tracking in the phasmid cilia of live Caenorhabditis elegans to study the effect of the CILK1 homologue DYF-5 on the dynamics of the IFT. We show that in the absence of DYF-5, IFT components accumulate at the ciliary tip. Kinesin-II is no longer restricted to the proximal segment of the cilium but is present throughout the cilium, while its velocity is different from that of OSM-3. The frequency of IFT trains is reduced and in particular retrograde trains were rarely observed. In the absence of DYF-5, retrograde transport is vastly reduced, resulting in the accumulation of IFT components at the tip and depletion at the base. The latter results in impeded anterograde train assembly, resulting in fewer trains with irregular composition. Our results show that DYF-5 plays a key role in regulating the turnarounds of IFT trains at the ciliary tip.
Collapse
Affiliation(s)
- Wouter Mul
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands 1081HV
| | - Aniruddha Mitra
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands 1081HV
| | - Bram Prevo
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands 1081HV
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands 1081HV
| |
Collapse
|
2
|
Limerick A, McCabe EA, Turner JS, Kuang KW, Brautigan DL, Hao Y, Chu CY, Fu SH, Ahmadi S, Xu W, Fu Z. An Epilepsy-Associated CILK1 Variant Compromises KATNIP Regulation and Impairs Primary Cilia and Hedgehog Signaling. Cells 2024; 13:1258. [PMID: 39120290 PMCID: PMC11311665 DOI: 10.3390/cells13151258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Mutations in human CILK1 (ciliogenesis associated kinase 1) are linked to ciliopathies and epilepsy. Homozygous point and nonsense mutations that extinguish kinase activity impair primary cilia function, whereas mutations outside the kinase domain are not well understood. Here, we produced a knock-in mouse equivalent to the human CILK1 A615T variant identified in juvenile myoclonic epilepsy (JME). This residue is in the intrinsically disordered C-terminal region of CILK1 separate from the kinase domain. Mouse embryo fibroblasts (MEFs) with either heterozygous or homozygous A612T mutant alleles exhibited a higher ciliation rate, shorter individual cilia, and upregulation of ciliary Hedgehog signaling. Thus, a single A612T mutant allele was sufficient to impair primary cilia and ciliary signaling in MEFs. Gene expression profiles of wild-type versus mutant MEFs revealed profound changes in cilia-related molecular functions and biological processes. The CILK1 A615T mutant protein was not increased to the same level as the wild-type protein when co-expressed with scaffold protein KATNIP (katanin-interacting protein). Our data show that KATNIP regulation of a JME-associated single-residue variant of CILK1 is compromised, and this impairs the maintenance of primary cilia and Hedgehog signaling.
Collapse
Affiliation(s)
- Ana Limerick
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Ellie A. McCabe
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Jacob S. Turner
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Kevin W. Kuang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - David L. Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (D.L.B.); (W.X.)
| | - Yi Hao
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA;
| | - Cheuk Ying Chu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Sean H. Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Sean Ahmadi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Wenhao Xu
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (D.L.B.); (W.X.)
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| |
Collapse
|
3
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Pahmeier F, Lavacca TM, Goellner S, Neufeldt CJ, Prasad V, Cerikan B, Rajasekharan S, Mizzon G, Haselmann U, Funaya C, Scaturro P, Cortese M, Bartenschlager R. Identification of host dependency factors involved in SARS-CoV-2 replication organelle formation through proteomics and ultrastructural analysis. J Virol 2023; 97:e0087823. [PMID: 37905840 PMCID: PMC10688318 DOI: 10.1128/jvi.00878-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Felix Pahmeier
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Teresa-Maria Lavacca
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher J. Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | | | - Giulia Mizzon
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Pietro Scaturro
- Systems Arbovirology, Leibniz Institute of Virology, Hamburg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
- Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Bocquet B, Borday C, Erkilic N, Mamaeva D, Donval A, Masson C, Parain K, Kaminska K, Quinodoz M, Perea-Romero I, Garcia-Garcia G, Jimenez-Medina C, Boukhaddaoui H, Coget A, Leboucq N, Calzetti G, Gandolfi S, Percesepe A, Barili V, Uliana V, Delsante M, Bozzetti F, Scholl HP, Corton M, Ayuso C, Millan JM, Rivolta C, Meunier I, Perron M, Kalatzis V. TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa. JCI Insight 2023; 8:e169426. [PMID: 37768732 PMCID: PMC10721274 DOI: 10.1172/jci.insight.169426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.
Collapse
Affiliation(s)
- Béatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Christel Masson
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Garcia-Garcia
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology and
- Institute for Human Functional Imaging (I2FH), University of Montpellier, CHU, Montpellier, France
| | | | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Medicine and Surgery
| | | | | | | | | | | | - Francesca Bozzetti
- Neuroradiology Unit, Diagnostic Department, University Hospital of Parma, Parma, Italy
| | - Hendrik P.N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Marta Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Millan
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
6
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Pu Y, Meng X, Zou Z. Identification and immunological characterization of cuproptosis-related molecular clusters in ulcerative colitis. BMC Gastroenterol 2023; 23:221. [PMID: 37370003 PMCID: PMC10304604 DOI: 10.1186/s12876-023-02831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ulcerative colitis is one of the two main forms of inflammatory bowel disease. Cuproptosis is reported to be a novel mode of cell death. METHODS We examined clusters of cuproptosis related genes and immune cell infiltration molecules in 86 ulcerative colitis samples from the GSE179285 dataset. We identified the differentially expressed genes according to the clustering method, and the performance of the SVM model, the random forest model, the generalized linear model, and the limit gradient enhancement model were compared, and then the optimal machine model was selected. To assess the accuracy of the learning predictions, the nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis have been accurately predicted. RESULTS Significant cuproptosis-related genes and immune response cells were detected between the ulcerative colitis and control groups. Two cuproptosis-associated molecular clusters were identified. Immune infiltration analysis indicated that different clusters exhibited significant heterogeneity. The immune scores for Cluster2 were elevated. Both the residual error and root mean square error of the random forest machine model had clinical significance. There was a clear correlation between the differentially expressed genes in cluster 2 and the response of immune cells. The nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis had sufficient accuracy. CONCLUSION We examined the complex relationship between cuproptosis and ulcerative colitis in a systematic manner. To estimate the likelihood that each subtype of cuproptosis will occur in ulcerative colitis patients and their disease outcome, we developed a promising prediction model.
Collapse
Affiliation(s)
- Yunfei Pu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianzhi Meng
- Department of Minimally Invasive Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Zhichen Zou
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhou Z, Katoh Y, Nakayama K. CEP19-RABL2-IFT-B axis controls BBSome-mediated ciliary GPCR export. Mol Biol Cell 2022; 33:ar126. [PMID: 36074075 PMCID: PMC9634966 DOI: 10.1091/mbc.e22-05-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The intraflagellar transport (IFT) machinery mediates the import and export of ciliary proteins across the ciliary gate, as well as bidirectional protein trafficking within cilia. In addition to ciliary anterograde protein trafficking, the IFT-B complex participates in the export of membrane proteins together with the BBSome, which consists of eight subunits encoded by the causative genes of Bardet-Biedl syndrome (BBS). The IFT25-IFT27/BBS19 dimer in the IFT-B complex constitutes its interface with the BBSome. We show here that IFT25-IFT27 and the RABL2 GTPase bind the IFT74/BBS22-IFT81 dimer of the IFT-B complex in a mutually exclusive manner. Cells expressing GTP-locked RABL2 [RABL2(Q80L)], but not wild-type RABL2, phenocopied IFT27-knockout cells, that is, they demonstrated BBS-associated ciliary defects, including accumulation of LZTFL1/BBS17 and the BBSome within cilia and the suppression of export of the ciliary GPCRs GPR161 and Smoothened. RABL2(Q80L) enters cilia in a manner dependent on the basal body protein CEP19, but its entry into cilia is not necessary for causing BBS-associated ciliary defects. These observations suggest that GTP-bound RABL2 is likely to be required for recruitment of the IFT-B complex to the ciliary base, where it is replaced with IFT25-IFT27.
Collapse
Affiliation(s)
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,*Address correspondence to: Kazuhisa Nakayama (); Yohei Katoh ()
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,*Address correspondence to: Kazuhisa Nakayama (); Yohei Katoh ()
| |
Collapse
|
9
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
10
|
Maurya AK, Sengupta P. The DYF-5 RCK and CDKL-1 CDKL5 kinases contribute differentially to shape distinct sensory neuron cilia morphologies in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000619. [PMID: 35996689 PMCID: PMC9391949 DOI: 10.17912/micropub.biology.000619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
The conserved CCRK, RCK, and CDKL5 kinases regulate cilia length in diverse organisms. In C. elegans , DYF-18 CCRK regulates DYF-5 RCK to shape both simple and complex cilia morphologies. The CDKL5 ortholog CDKL-1 has also been suggested to act downstream of DYF-18 but independently of DYF-5 to regulate lengths of simple rod-like cilia. Here we show that CDKL-1 is largely dispensable for regulation of complex cilia structures. Using genetic epistasis experiments, we confirm that CDKL-1 and DYF-5 act independently to control cilia architecture. Our results indicate that multiple kinases act via distinct pathways to regulate unique cilia ultrastructures.
Collapse
Affiliation(s)
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
,
Correspondence to: Piali Sengupta (
)
| |
Collapse
|
11
|
Ishida Y, Tasaki K, Katoh Y, Nakayama K. Molecular basis underlying the ciliary defects caused by IFT52 variations found in skeletal ciliopathies. Mol Biol Cell 2022; 33:ar83. [PMID: 35704471 PMCID: PMC9582644 DOI: 10.1091/mbc.e22-05-0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery, which contains the IFT-A and IFT-B complexes powered by the kinesin-2 and dynein-2 motors. Mutations in genes encoding subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies. Some subunits of the IFT-B complex, including IFT52, IFT80, and IFT172, are also mutated in skeletal ciliopathies. We here show that IFT52 variants found in individuals with short-rib polydactyly syndrome (SRPS) are compromised in terms of formation of the IFT-B holocomplex from two subcomplexes and its interaction with heterotrimeric kinesin-II. IFT52-knockout (KO) cells expressing IFT52 variants that mimic the cellular conditions of individuals with SRPS demonstrated mild ciliogenesis defects and a decrease in ciliary IFT-B level. Furthermore, in IFT52-KO cells expressing an SRPS variant of IFT52, ciliary tip localization of ICK/CILK1 and KIF17, both of which are likely to be transported to the tip via binding to the IFT-B complex, was significantly impaired. Altogether these results indicate that impaired anterograde trafficking caused by a decrease in the ciliary level of IFT-B or in its binding to kinesin-II underlies the ciliary defects found in skeletal ciliopathies caused by IFT52 variations.
Collapse
Affiliation(s)
- Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|