1
|
Hansson KA. Multinucleation as a buffer against gene expression noise in syncytial myofibres. J Physiol 2025; 603:1013-1016. [PMID: 39865299 DOI: 10.1113/jp288218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Affiliation(s)
- Kenth-Arne Hansson
- Norwegian University College of Health Sciences, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
3
|
Sun C, Swoboda CO, Morales FM, Calvo C, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of nuclei in skeletal myofibers uncovers distinct transcripts and interplay between myonuclear populations. Nat Commun 2024; 15:9372. [PMID: 39477931 PMCID: PMC11526147 DOI: 10.1038/s41467-024-53510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Multinucleated skeletal muscle cells need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in cells that already harbor hundreds of nuclei. Here we utilize nuclear RNA-sequencing approaches and develop a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fabian Montecino Morales
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristofer Calvo
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
5
|
Sun C, Swoboda CO, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of newly accrued nuclei in skeletal myofibers uncovers distinct transcripts and interplay between nuclear populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554609. [PMID: 37662191 PMCID: PMC10473681 DOI: 10.1101/2023.08.24.554609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Multinucleated skeletal muscle cells have an obligatory need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in syncytial cells that already harbor hundreds of nuclei. To begin to answer this long-standing question, we utilized nuclear RNA-sequencing approaches and developed a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|