1
|
Li S, He J, Kuang H, Wang X, Zhou M, Li D, Kang B, He H, He L, Lin W, Lv Y. Rab11a-dependent recycling of Glut3 inhibits seizure-induced neuronal disulfidptosis by alleviating glucose deficiency. Cell Biosci 2025; 15:69. [PMID: 40437641 PMCID: PMC12121293 DOI: 10.1186/s13578-025-01396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/12/2025] [Indexed: 06/01/2025] Open
Abstract
Seizures can trigger neuronal glucose deficiency, thereby inducing disulfidptosis. Disulfidptosis is a novel cell death mechanism characterized by the abnormal accumulation of disulfide caused by glucose deficiency. However, the mechanism underlying disulfidptosis caused by glucose deficiency in seizures remains elusive. Rab11a-dependent recycling of glucose transporter 3 (Glut3) is closely related to glucose metabolism in neurons, which may contribute to neuronal disulfidptosis after seizures by abnormal glucose metabolism. So here we introduced a well-established in vitro model of seizures to evaluate cell survival, glucose levels, disulfidptosis biomarkers, Glut3 and Rab11a expression, the recycling ratio of Glut3, and the protein complex of Glut3-Rab11a. Cell survival rates and glucose levels were lower in the in vitro model of seizures, accompanied by elevated levels of disulfidptosis markers. Moreover, the surface expression and the recycling ratio of Glut3, as well as the protein complex of Glut3-Rab11a, were positively correlated with Rab11a expression. Lastly, Rab11 overexpression improved cell survival rates, increased glucose levels, and decreased the levels of disulfidptosis biomarkers in the in vitro model of seizure. Rab11a-dependent recycling of Glut3 inhibited seizure-induced neuronal disulfidptosis by alleviating glucose deficiency.
Collapse
Affiliation(s)
- Sijun Li
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Junrui He
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Huimin Kuang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaojuan Wang
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Muhua Zhou
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Dongmei Li
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Baoren Kang
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Honghu He
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lina He
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei Lin
- Department of Geriatric rehabilitation/Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
2
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
3
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
5
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|