1
|
Baek JY, Kim JH, Lee NK, Paik HD. Heat-killed Lactiplantibacillus plantarum WB3813 and Lactiplantibacillus plantarum WB3814 Alleviate LPS-Induced Inflammatory Damage and Apoptosis in A549 Cells. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10496-4. [PMID: 40029459 DOI: 10.1007/s12602-025-10496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic lung inflammation and apoptosis. Although paraprobiotics are known for their beneficial effects on respiratory health, research on their effect on COPD is limited. In this study, we investigated the effects of heat-killed Lactiplantibacillus plantarum WB3813 and Lact. plantarum WB3814 on inflammation and apoptosis in lipopolysaccharide (LPS)-induced A549 cells. Both strains demonstrated appropriate probiotic properties and were confirmed to be safe. The results showed that heat-killed lactic acid bacteria (H-LAB) exhibited anti-inflammatory and anti-apoptotic effects. Although LPS exposure reduced cell viability, treatment with the two H-LAB demonstrated a protective effect on the cells. RT-PCR results showed that H-LAB pretreatment reduced COPD-related mRNA expression levels, and western blotting analysis indicated downregulation of the activation NF-κB and intrinsic apoptotic signaling pathways. Additionally, elevated levels of IL-6 and eotaxin induced by LPS decreased. Furthermore, the strains significantly lowered intracellular ROS levels, which were increased by LPS, and promoted radical-scavenging activity. Although the in vivo effects have not yet been elucidated, this study demonstrated that heat-killed or live Lact. plantarum WB3813 and Lact. plantarum WB3814 exhibit anti-inflammatory and anti-apoptotic effects in a lung epithelial cell injury model. These findings provide experimental evidence for the development of functional foods to improve bronchial health and for potential clinical applications in COPD treatment.
Collapse
Affiliation(s)
- Ji-Yeon Baek
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Zou H, Huang C, Feng Q, Yu B, Liu J, Shu X, Nie X, Zhang H, Zou X. Longitudinal transcriptome analysis reveals distinct gene expression patterns in traditional Chinese medicine syndromes of upper respiratory tract infections. Front Genet 2024; 15:1483098. [PMID: 39659674 PMCID: PMC11628533 DOI: 10.3389/fgene.2024.1483098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Background Wind-cold (WC) and Wind-heat (WH) are common syndromes of upper respiratory tract infections (URTIs) in traditional Chinese medicine (TCM), presenting different clinical features, but the transcriptomic changes associated with these syndromes remained unclear. Materials and Methods Patients with WC and WH syndromes were recruited from outpatient unit, pharyngeal swabs were collected for pathogen detection. Peripheral blood samples were obtained on day 1 and day 6, with healthy volunteers as controls. Transcriptome sequencing was performed to identify differentially expressed genes and pathways associated with the two syndromes. Marker genes for each syndrome were identified, and a machine learning classifier was developed. Results A total of 124 samples from 34 WC, 30 WH patients, and 16 health controls were included in this study. No significant differences in etiological spectrum were observed between the syndromes. Both syndromes showed distinct gene expression profiles compared to health control. Gene enrichment analysis indicated that TGF-β and Wnt/β -catenin pathways were downregulated in the WH. The oxidative phosphorylation pathways were downregulated in WC cohort compared to the WH cohort. As the URTIs improved from day 1 to day 6, oxidative phosphorylation pathway activity returned to normal levels. The marker genes for WC and WH syndromes were identified and a random forest classifier was built, achieving an accuracy of 0.88. Conclusion WC and WH syndromes demonstrated distinct gene expression profiles, supporting more precise TCM diagnosis. WC syndrome is marked by mitochondrial dysfunction, while WH syndrome is characterized by downregulated TGF-β and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Hao Zou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Changrui Huang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinqi Feng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bang Yu
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Shu
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolu Nie
- National Center for Children’s Health, Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Hongchun Zhang
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Zou
- National Center for Respiratory Medicine, National Centre for Integrative Chinese and Western Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Li L, Liu Z, Tian L, Yao S, Feng L, Lai F, Wang K, Zhang Y, Li Y, Wang J, Ren W. Single-cell proteomics delineates murine systemic immune response to blast lung injury. Commun Biol 2024; 7:1429. [PMID: 39489806 PMCID: PMC11532540 DOI: 10.1038/s42003-024-07151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Victims of explosive events frequently suffer from blast lung injuries. Immune system has been implicated in the pathogenesis of this disease. However, systemic immune responses underlying the progression and recovery of injury repair remain poorly understood. Here, we depict the systemic landscape of immune dysregulation during blast lung injury and uncover immune recovery patterns. Single-cell analyses reveal dramatic changes in neutrophils, macrophages, monocytes, dendritic cells, and eosinophils after a gas explosion, along with early involvement of CD4 T, CD8 T, and Th17 cells. We demonstrate that myeloid cells primarily exert functions during the acute phase, while the spleen serves as an alternative source of granulocytes. Granulopoiesis is initiated in the bone marrow at a later stage during blast lung injury recovery, rather than at the acute stage. These findings contribute to a better understanding of the pathogenesis and provide valuable insights for potential immune interventions in blast lung injury.
Collapse
Affiliation(s)
- Long Li
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhongrui Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Linqiang Tian
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lili Feng
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kunxi Wang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yue Zhang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanyan Li
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jinheng Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China.
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Clinical Medical Centre of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Wang K, Huang Z, He J, Kong L, Chen M. Pathophysiological changes and injury markers for acute lung injury from blunt impact in infant rabbits. Front Pediatr 2024; 12:1354531. [PMID: 38910959 PMCID: PMC11190302 DOI: 10.3389/fped.2024.1354531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Traffic accidents, particularly blunt impacts, cause serious injuries in children. We aimed to assess inflammatory and injury responses in infant rabbits subjected to acute lung injury resulting from blunt impact, with the goal of identifying potential circulatory injury markers. METHODS Forty 4-week-old infant rabbits were subjected to a right chest impact using a Hopkinson bar with 2,600 g. Computed tomography was employed to assess injury severity. Pathological changes were observed using hematoxylin and eosin staining in the control, 0, 24, and 72 h groups, post-injury. Immunohistochemistry was used to examine surfactant protein A (SP-A) changes in right lung tissues and upper main bronchi. Serum levels of interleukin-6 (IL-6), IL-8, and SP-A were measured using ELISA within 24 h post-injury in the control, 0 h, and 24 h groups. RESULTS Following blunt injury, significant increases were observed in blood white blood cell count (F = 101.556, P < 0.01) and neutrophil percentage (F = 104.228, P < 0.01), which gradually decreased after 24 and 72 h. The lung wet/dry weight ratio indicated significant edema (F = 79.677, P < 0.01), corroborated by hematoxylin and eosin staining showing edema, exudation, and marked granulocyte infiltration in the control, 0 h, 24 h and 72 h groups. SP-A levels decreased rapidly at 0 h, and recovered between 24 and 72 h in the right lung tissues (F = 6.7, P < 0.05), left lung (F = 15.825, P < 0.05) and upper main bronchi (F = 59.552, P < 0.01). The ELISA results showed increasing trends for the control and 0 h groups, while decreasing trends were observed in 24 h group for IL-6 (F = 58.328, P < 0.01) and IL-8 (F = 41.802, P < 0.01). Conversely, SP-A exhibited a decreasing trend in the control and 0 h groups but increased in the serum of 24 h group (F = 52.629, P < 0.01). DISCUSSION In cases of direct chest trauma in infant rabbits, particularly mild injuries without rib fractures. SP-A levels correlated with pathological changes across all groups and may serve as biomarkers for pediatric blunt lung impact.
Collapse
Affiliation(s)
- Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - ZhenPeng Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - JiaWei He
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - LingWang Kong
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Wang H, Gao JH, Fan XL, Lu Q, Li L, Ma N, Wang Q, Zhang YH. Identification of overlay differentially expressed genes in both rats and goats with blast lung injury through comparative transcriptomics. Chin J Traumatol 2024; 27:34-41. [PMID: 38071167 PMCID: PMC10859281 DOI: 10.1016/j.cjtee.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024] Open
Abstract
PURPOSE To identify the potential target genes of blast lung injury (BLI) for the diagnosis and treatment. METHODS This is an experimental study. The BLI models in rats and goats were established by conducting a fuel-air explosive power test in an unobstructed environment, which was subsequently validated through hematoxylin-eosin staining. Transcriptome sequencing was performed on lung tissues from both goats and rats. Differentially expressed genes were identified using the criteria of q ≤ 0.05 and |log2 fold change| ≥ 1. Following that, enrichment analyses were conducted for gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways. The potential target genes were further confirmed through quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay. RESULTS Observations through microscopy unveiled the presence of reddish edema fluid, erythrocytes, and instances of focal or patchy bleeding within the alveolar cavity. Transcriptome sequencing analysis identified a total of 83 differentially expressed genes in both rats and goats. Notably, 49 genes exhibited a consistent expression pattern, with 38 genes displaying up-regulation and 11 genes demonstrating down-regulation. Enrichment analysis highlighted the potential involvement of the interleukin-17 signaling pathway and vascular smooth muscle contraction pathway in the underlying mechanism of BLI. Furthermore, the experimental findings in both goats and rats demonstrated a strong association between BLI and several key genes, including anterior gradient 2, ankyrin repeat domain 65, bactericidal/permeability-increasing fold containing family A member 1, bactericidal/permeability-increasing fold containing family B member 1, and keratin 4, which exhibited up-regulation. CONCLUSIONS Anterior gradient 2, ankyrin repeat domain 65, bactericidal/permeability-increasing fold containing family A member 1, bactericidal/permeability-increasing fold containing family B member 1, and keratin 4 hold potential as target genes for the prognosis, diagnosis, and treatment of BLI.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China.
| | - Jun-Hong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xiao-Lin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Yu-Hao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| |
Collapse
|
6
|
Li J, Zhang J, Shi M, Yu S, Ji M, Liang Y, Meng X. Crosstalk between Inflammation and Hemorrhage/Coagulation Disorders in Primary Blast Lung Injury. Biomolecules 2023; 13:biom13020351. [PMID: 36830720 PMCID: PMC9953683 DOI: 10.3390/biom13020351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Primary blast lung injury (PBLI), caused by exposure to high-intensity pressure waves from explosions in war, terrorist attacks, industrial production, and life explosions, is associated with pulmonary parenchymal tissue injury and severe ventilation insufficiency. PBLI patients, characterized by diffused intra-alveolar destruction, including hemorrhage and inflammation, might deteriorate into acute respiratory distress syndrome (ARDS) with high mortality. However, due to the absence of guidelines about PBLI, emergency doctors and rescue teams treating PBLI patients rely on experience. The goal of this review is to summarize the mechanisms of PBLI and their cross-linkages, exploring potential diagnostic and therapeutic targets of PBLI. We summarize the pathophysiological performance and pharmacotherapy principles of PBLI. In particular, we emphasize the crosstalk between hemorrhage and inflammation, as well as coagulation, and we propose early control of hemorrhage as the main treatment of PBLI. We also summarize several available therapy methods, including some novel internal hemostatic nanoparticles to prevent the vicious circle of inflammation and coagulation disorders. We hope that this review can provide information about the mechanisms, diagnosis, and treatment of PBLI for all interested investigators.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
- Correspondence:
| |
Collapse
|
7
|
Xie Q, Wang Y, Zou GL. Protective effects of lavender oil on sepsis-induced acute lung injury via regulation of the NF-κB pathway. PHARMACEUTICAL BIOLOGY 2022; 60:968-978. [PMID: 35588105 PMCID: PMC9122384 DOI: 10.1080/13880209.2022.2067570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Lavender oil (Lav) from Lavandula angustifolia L. (Lamiacease) exhibits antioxidative and anti-inflammatory properties against various diseases. OBJECTIVE The study explores the effect of Lav pre-treatment on sepsis-induced acute lung injury (ALI). MATERIALS AND METHODS Sprague-Dawley rats were assigned into Sham, caecal ligation and puncture (CLP), CLP + Lav (200, 400, and 800 mg/kg) groups. Lav was administered by gavage, once a day, for 7 days. Histological analysis was performed using haematoxylin and eosin staining. Cytokine and nitrite levels were detected by enzyme-linked immunosorbent assay kits and Griess reagent. Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot. RESULTS The levels of tumour necrosis factor-α (BALF: 64%, serum: 59%), interleukin (IL)-1β (BALF: 63%, serum: 66%) and IL-6 (BALF: 54%, serum: 59%), and nitrite (40%) and inducible nitric oxide synthase (51%), and the level of myeloperoxidase (66%) and malondialdehyde (59%), and cleaved-caspase 3 (84%) and Bax expression (74%) induced by CLP were decreased when given Lav. Additionally, the level of superoxide dismutase (211%) and glutathione (139%), and the expression of Bcl-2 (980%) induced by CLP were increased when given Lav. The increased p-nuclear factor (NF)-κB/NF-κB (72%) and p-inhibitor of κBα (IκBα)/IκBα (77%) induced by CLP could be reversed by Lav. DISCUSSION AND CONCLUSIONS Lav pre-treatment might protect rats from sepsis-induced ALI via deactivation of the NF-κB pathway. Our research demonstrated the regulatory mechanisms of Lav in sepsis-induced ALI and can provide a theoretical basis for the use of Lav in the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Qian Xie
- Pediatrics Department, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Yi Wang
- Pediatrics Department, The Sanya Hongsen Hospital of Harbin Medical Universit, Sanya, Hainan, China
| | - Guo-Liang Zou
- No.1 Cardiovascular Disease Department, Heilongjiang Chinese Medical University No.1 Affiliated Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mechanism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that mediate cognitive impairments.
Main body
We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, methamphetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal differentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by neuroinflammation, synaptic activity, and neuronal plasticity.
Conclusion
This review outlines the effects of acute or chronic drug use and potential molecular alterations in the central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
Collapse
|
9
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|