1
|
Chen Q, Lu C, Li D, Xu L, Wang C, Yu L. CDK1 inhibitor RO-3306 enhances BTKi potency in diffuse large B-cell lymphoma by suppressing JAK2/STAT3 signaling. Int J Biol Macromol 2025; 297:139893. [PMID: 39818374 DOI: 10.1016/j.ijbiomac.2025.139893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, which characterized by a high degree of heterogeneity in terms of clinical presentation, molecular phenotype, and genetic features. However, approximately 30 %-40 % of patients are refractory to standard chemotherapy, and their prognosis is poor. The emergence of small-molecule inhibitors, such as Bruton's tyrosine kinase inhibitors (BTKi), has greatly improved the treatment of DLBCL; however, drug resistance associated with small-molecule inhibitors has greatly limited their clinical application. In this study, we elucidated the principal genes influencing BTKi sensitivity in DLBCL and delineated the underlying mechanisms. This study identified cyclin-dependent kinase 1 (CDK1) as the central gene influencing BTKi sensitivity in DLBCL cells. The application of RO-3306 effectively promoted the growth and increased the apoptotic rate of DLBCL cells. Furthermore, RO-3306 increased the susceptibility of DLBCL cells to BTKis in both in vitro and xenograft experimental models. RNA-seq analyses suggested the potential modulation of the JAK2/STAT3 signaling cascade by RO-3306, a finding further confirmed by the diminished phosphorylation documented by western blotting. This study provides pivotal insights into the mechanisms governing BTKi sensitivity in DLBCL and potentially reveals new avenues for targeted therapeutic strategies.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- STAT3 Transcription Factor/metabolism
- Janus Kinase 2/metabolism
- Signal Transduction/drug effects
- Animals
- Cell Line, Tumor
- CDC2 Protein Kinase/antagonists & inhibitors
- CDC2 Protein Kinase/metabolism
- Mice
- Protein Kinase Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Dongnan Li
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Lei Xu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Chunling Wang
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai'an, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China.
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Woo YR, Kwon CS, Lee JE, Jeon BE, Kim TJ, Choo J, Seo YS, Kim SW. Ajania pacifica (Nakai) K. Bremer and Humphries Extract Limits MYC Expression to Induce Apoptosis in Diffuse Large B Cell Lymphoma. Curr Issues Mol Biol 2024; 46:4580-4594. [PMID: 38785546 PMCID: PMC11119827 DOI: 10.3390/cimb46050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The proto-oncogene MYC is frequently dysregulated in patients with diffuse large B-cell lymphoma (DLBCL) and plays a critical role in disease progression. To improve the clinical outcomes of patients with DLBCL, the development of strategies to target MYC is crucial. The use of medicinal plants for developing anticancer drugs has garnered considerable attention owing to their diverse mechanisms of action. In this study, 100 plant extracts of flora from the Republic of Korea were screened to search for novel agents with anti-DLBCL effects. Among them, Ajania pacifica (Nakai) K. Bremer and Humphries extract (APKH) efficiently suppressed the survival of DLBCL cells, while showing minimal toxicity toward normal murine bone marrow cells. APKH suppressed the expression of anti-apoptotic BCL2 family members, causing an imbalance between the pro-apoptotic and anti-apoptotic BCL2 members. This disrupted mitochondrial membrane potential, cytochrome c release, and pro-caspase-3 activation and eventually led to DLBCL cell death. Importantly, MYC expression was markedly downregulated by APKH and ectopic expression of MYC in DLBCL cells abolished the pro-apoptotic effects of APKH. These results demonstrate that APKH exerts anti-DLBCL effects by inhibiting MYC expression. Moreover, when combined with doxorubicin, an essential component of the CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone), APKH synergistically enhanced the therapeutic effect of doxorubicin. This indicates that APKH may overcome drug resistance, which is common in patients with refractory/relapsed DLBCL. To identify compounds with anti-DLBCL activities in APKH, the chemical profile analysis of APKH was performed using UPLC-QTOF/MSe analysis and assessed for its anticancer activity. Based on the UPLC-QTOF/MSe chemical profiling, it is conceivable that APKH may serve as a novel agent targeting MYC and sensitizing drug-resistant DLBCL cells to CHOP chemotherapy. Further studies to elucidate how the compounds in APKH exert tumor-suppressive role in DLBCL are warranted.
Collapse
Affiliation(s)
- Ye-Rin Woo
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Chan-Seong Kwon
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Ji-Eun Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Joy Choo
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Young-Seob Seo
- Korea Research Institute of Standard and Science, Daejeon 34113, Republic of Korea;
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Zhang H, Hu K, Lu Y, Xu Z, Chen G, Yu D, Gao X, Feng Q, Jia X, Xu L, Zhou J, Wu X, Song D, Zhu H, Li B, Zhu W, Shi J. A novel pterostilbene compound DCZ0825 induces macrophage M1 differentiation and Th1 polarization to exert anti-myeloma and immunomodulatory. Int Immunopharmacol 2024; 127:111446. [PMID: 38157697 DOI: 10.1016/j.intimp.2023.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression. DCZ0825 inhibits the activity and proliferation of MM cells causing no significant toxicity to normal cells. Using flow cytometry, this study found that DCZ0825 induced caspase-dependent apoptosis in MM cells and arrested the cell cycle in the G2/M phase by down-regulating CyclinB1, CDK1 and CDC25. Moreover, DCZ0825 up-regulated IRF3 and IRF7 to increase IFN-γ, promoting M2 macrophages to transform into M1 macrophages, releasing the immunosuppression of CD4T cells and stimulated M1 macrophages and Th1 cells to secrete more INF-γ to form immune killing effect on MM cells. Treatment with DCZ0825 resulted in an increased proportion of positive regulatory cells such as CD4T, memory T cells, CD8T, and NK cells, with downregulation of the proportion of negative regulatory cells such as Treg cells and MDSCs. In conclusion, DCZ0825 is a novel compound with both antitumor and immunomodulatory activity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
4
|
Jin S, Li B, Zhang B, Gao X, Jia X, Xu L, Chang S, Hu K, Wang G, Xu Z, Zhang T, Song D, Yang G, Wu X, Zhu H, Huang C, Lu Y, Shi J, Zhu W, Chen G. Dihydrocelastrol induces antitumor activity and enhances the sensitivity of bortezomib in resistant multiple myeloma by inhibiting STAT3-dependent PSMB5 regulation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1884-1891. [PMID: 38009004 PMCID: PMC11294055 DOI: 10.3724/abbs.2023260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 11/28/2023] Open
Abstract
Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.
Collapse
Affiliation(s)
- Shuhan Jin
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Bo Li
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Bibo Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- of Hematologythe Affiliated People’s Hospital of Ningbo UniversityNingbo315000China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xinyan Jia
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Li Xu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Guanli Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhijian Xu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ting Zhang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Dongliang Song
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Guang Yang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Xiaosong Wu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Huabin Zhu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Cheng Huang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Yumeng Lu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Jumei Shi
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Weiliang Zhu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gege Chen
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| |
Collapse
|
5
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
6
|
A novel alkaloid compound, DCZ0358, exerts significant antitumor activity in bortezomib-resistant multiple myeloma cells through inhibition of JAK2/STAT3 pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:215-224. [PMID: 36815376 PMCID: PMC10157528 DOI: 10.3724/abbs.2023014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Multiple myeloma (MM), the second most common haematological malignancy, is currently incurable because patients often develop multiple drug resistance and experience subsequent relapse of the disease. This study aims to identify a potential therapeutic agent that can counter bortezomib (BTZ) resistance in MM. DCZ0358, a novel alkaloid compound, is found to exert potent cytotoxic effects against BTZ-resistant MM cells in vivo and in vitro. The anti-myeloma activity of DCZ0358 is associated with inhibition of cell proliferation, promotion of cell apoptosis via caspase-mediated apoptotic pathways, and induction of G0/G1 phase arrest via downregulation of cyclin D1, CDK4, and CDK6. Further investigation of the molecular mechanism shows that DCZ0358 suppresses the JAK2/STAT3 signaling pathway. In conclusion, DCZ0358 can successfully counter BTZ resistance in MM cells. This study provides evidence that warrants future preclinical assessments of DCZ0358 as a therapeutic agent against BTZ resistance in MM.
Collapse
|
7
|
Wang G, Liu H, An L, Hou S, Zhang Q. CAPG facilitates diffuse large B-cell lymphoma cell progression through PI3K/AKT signaling pathway. Hum Immunol 2022; 83:832-842. [DOI: 10.1016/j.humimm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|