1
|
Zhang Q, Pathak JL, Wu H, Yan Y, Lin B, Xie Z, Helder MN, Jaspers RT, Xiao Y. Pollen-like mesoporous silica nanoparticles facilitate macrophage-mediated anti-inflammatory response via physical contact cues in the osteoimmune microenvironment. Acta Biomater 2025; 197:339-356. [PMID: 40064217 DOI: 10.1016/j.actbio.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Nanomaterial-mediated macrophage immune response plays a crucial role in bone regeneration microenvironment. Mesoporous silica nanoparticles are widely used as nano-drug carriers, imaging agents, and bioactivity regulators for potential tissue regeneration. It is known that surface topography features of nanomaterials play an important regulatory role in the immune response. In this study, it was found that the pollen-like surface morphology of mesoporous silica nanoparticles (PMSNs) inhibited the expression of pro-inflammatory markers at gene and protein levels in macrophages (RAW 264.7 cells) compared to the smooth surface morphology of mesoporous silica nanoparticles (MSNs). Scanning electron microscopy images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated on the membrane and prevented the M1 polarization of macrophages. PMSNs-induced macrophage anti-inflammatory responses were associated with up-regulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that macrophages phagocytosed both MSNs and PMSNs while inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages promoted osteogenic differentiation of mouse bone marrow-derived stromal cells (mBMSCs), evidenced by increased mineralization and osteogenic marker BMP2 expression via Alizarin Red S and LSCM assays compared to MSNs-induced conditioned medium. Moreover, a lipopolysaccharide (LPS)-induced osteolysis model in mouse cranial bone further demonstrated that PMSNs prevent bone resorption by mitigating LPS-induced inflammation. Our results revealed that PMSNs-mediated macrophage immunomodulation promotes bone regeneration via surface topology-related physical contact cues. STATEMENT OF SIGNIFICANCE: Nanomaterials have been widely used in bone regeneration. The immune response of macrophages induced by nanomaterials, plays a crucial role in bone regeneration. However, most nanomaterial immunomodulatory research focus on macrophage internalization or phagocytosis. The early contact between the cell membrane and nanomaterials is often easily overlooked. To clarify how early contact between nanomaterial-cell membrane regulates macrophage immune response. We developed MSN particles with special pollen-like surface morphology and studied the impact of nanoparticle morphology on the early contact between materials and macrophage cell membranes, as well as the subsequent impact on macrophage immune response and bone regeneration and related regulatory mechanisms. The results can provide new guidance for the design and development of osteoimmunomodulatory nanomaterials.
Collapse
Affiliation(s)
- Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Haitong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Yongyong Yan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Bingpeng Lin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhenhuan Xie
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HV Amsterdam, the Netherlands.
| | - Richard T Jaspers
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands.
| | - Yin Xiao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China; School of Medicine and Dentistry & Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD 4000, Australia.
| |
Collapse
|
2
|
Rajendran AK, Anthraper MSJ, Hwang NS, Rangasamy J. Osteogenesis and angiogenesis promoting bioactive ceramics. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 159:100801. [DOI: 10.1016/j.mser.2024.100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Kämmerer PW, Heimes D, Zaage F, Ganz C, Frerich B, Gerber T, Dau M. Improving material properties of a poloxamer P407 hydrogel-based hydroxyapatite bone substitute material by adding silica-A comparative in vivo study. J Biomed Mater Res B Appl Biomater 2024; 112:e35405. [PMID: 38701384 DOI: 10.1002/jbm.b.35405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Diana Heimes
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | | | - Cornelia Ganz
- Institute of Physics, Rostock University, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Thomas Gerber
- Institute of Physics, Rostock University, Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
4
|
Yuan X, Wu T, Lu T, Ye J. Effects of Zinc and Strontium Doping on In Vitro Osteogenesis and Angiogenesis of Calcium Silicate/Calcium Phosphate Cement. ACS Biomater Sci Eng 2023; 9:5761-5771. [PMID: 37676927 DOI: 10.1021/acsbiomaterials.3c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Based on multiple biological functions (mainly osteogenesis and angiogenesis) of bioactive ions, Zn/Sr-doped calcium silicate/calcium phosphate cements (Zn/Sr-CS/CPCs, including 10Zn-CS/CPC, 20Sr-CS/CPC, and 10Zn/20Sr-CS/CPC) were prepared by the addition of Zn and Sr dual active ions into CS/CPC to further accelerate its bone regeneration in this study. The physicochemical and biological properties of the Zn/Sr-CS/CPCs were systematically investigated. The results showed that the setting time was slightly prolonged, the compressive strength and porosity did not change much, and all groups maintained good injectability after the doping of Zn and Sr. Besides, the doping of Zn and Sr had little effect on the phase and microstructure of hydrated products of CS/CPC. The degradation rate of Zn/Sr-CS/CPCs decreased after doping with Zn and Sr. In mouse bone marrow mesenchymal stem cells (mBMSC) experiments, all Zn/Sr-CS/CPCs stimulated the viability, adhesion, proliferation, and alkaline phosphatase (ALP) activity together with osteogenesis-related genes (ALP, Runx2, Col-I, OCN, and OPN). The further addition of Zn and Sr played better and synergistic roles in in vitro osteogenesis. Thereinto, 10Zn/20Sr-CS/CPC manifested the optimum in vitro osteogenic performance. As for human umbilical vein endothelial cell (HUVEC) experiments, the incorporation of CS doped with Zn and Sr into CPC possessed good vascularization properties of proliferation, NO secretion, tube formation, and the expression of angiogenesis-related genes (VEGF, bFGF, and eNOS). In conclusion, the doping of Zn and Sr into CS/CPC could exhibit excellent osteogenesis and good angiogenesis potentials and 10Zn/20Sr-CS/CPC could be considered as a promising candidate in bone repair.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510536, P. R. China
| | - Teliang Lu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
6
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
7
|
Hu Y, Zhang H, Zou Q, Liu W, Li W, Yan L, Dai H. The effect of silicon groups on the physicochemical property and bioactivity of L-phenylalanine derived poly(amide-imide). J Biomed Mater Res B Appl Biomater 2023. [PMID: 37081804 DOI: 10.1002/jbm.b.35257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Poly(amide-imide) (PAI), serving as a synthetic polymer, has been widely used in industry for excellent mechanical properties, chemical resistance and high thermal stability. However, lack of suitable cell niche and biological activity limited the further application of PAI in biomedical engineering. Herein, silicon modified L-phenylalanine derived poly(amide-imide) (PAIS) was synthesized by introducing silica to L-phenylalanine derived PAI to improve physicochemical and biological performances. The influence of silicon amount on physicochemical, immune, and angiogenic performances of PAIS were systemically studied. The results show that PAIS exerts excellent hydrophilic, mechanical, biological activity. PAIS shows no effects on the number of macrophages, but can regulate macrophage polarization and angiogenesis in a dose-dependent manner. This study advanced our understanding of silicon modification in PAI can modulate cell responses via initiating silicon concentration regulation. The acquired knowledge will provide a new strategy to design and optimize biomedical PAI in the future.
Collapse
Affiliation(s)
- Yaping Hu
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Hongbiao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Qiying Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Honglian Dai
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
8
|
Lu T, Wang J, Yuan X, Tang C, Wang X, He F, Ye J. Zinc-doped calcium silicate additive accelerates early angiogenesis and bone regeneration of calcium phosphate cement by double bioactive ions stimulation and immunoregulation. BIOMATERIALS ADVANCES 2022; 141:213120. [PMID: 36122428 DOI: 10.1016/j.bioadv.2022.213120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium phosphate cement (CPC), a popular injectable bone defect repairing material, has deficiencies in stimulating osteogenesis and angiogenesis. To overcome the weaknesses of CPC, zinc-doped calcium silicate (Zn-CS) which can release bioactive silicon (Si) and zinc (Zn) ions was introduced to CPC. The physicochemical and biological properties of CPC and its composites were evaluated. Firstly, the most effective addition content of calcium silicate (CaSiO3, CS) in promoting the in vitro osteogenesis was first sorted out. On this basis, the most effective Zn doping content in CS for improving osteogenic differentiation of CPC-based composites was screened out. Finally, the immunoregulation of CS/CPC and Zn-CS/CPC in promoting angiogenesis and osteogenesis was studied. The results showed that the most effective incorporation content of CS was 10 wt%. Zn at a doping content of 30 mol% in CS (30Zn-CS) further enhanced the osteogenic capacity of CS/CPC and simultaneously maintained excellent proangiogenic activity. CS/CPC and 30Zn-CS/CPC promoted the recruitment of macrophages and enhanced M2 polarization while inhibiting M1 polarization, which was beneficial to the early vascularization as well as subsequent new bone formation. When implanted into the femoral condylar defects of rabbits, 30Zn-CS/CPC showed high in vivo materials degradation rate, angiogenesis and osteogenesis, due to the synergistic effects of Si and Zn on bio-stimulation and immunoregulation. This study shed light on the synergistic effects of Si and Zn on regulating the angiogenic, osteogenic, and immunoregulatory activity, and 30Zn-CS/CPC is expected to repair the lacunar bone defects effectively.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Jinchao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Chenyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xiaolan Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
9
|
Kong Y, Zhang X, Ma X, Wu L, Chen D, Su B, Liu D, Wang X. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis. J Biomater Appl 2022; 37:459-473. [PMID: 35623361 DOI: 10.1177/08853282221105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanhang Kong
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xin Zhang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xinnan Ma
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Leilei Wu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Chen
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Su
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daqian Liu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|