1
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Ballestero E, Bolaños F, Ruepert C, Jiménez RR, Bonilla F, Sasa M. Immunological and physiological responses to predation risk and sublethal concentrations of chlorothalonil and β-endosulfan in Lithobates taylori (Anura: Ranidae) tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107071. [PMID: 39236548 DOI: 10.1016/j.aquatox.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Pesticide exposure and its interaction with other natural stressors can play a role in amphibian population declines because disruptions in stress hormone regulatory mechanisms may inhibit immune responses during metamorphosis. Here, we determined the interactive effects of predation risk and sublethal concentration of two pesticides on immunological and physiological responses in tadpoles of the tropical frog Lithobates taylori. Using mesocosms, we used chronic exposure to three levels of chlorothalonil and β-endosulfan in the presence or absence of Odonate larvae. Our results show that β-endosulfan in high concentrations reduced the weight of the tadpoles and increased the neutrophil count and corticosterone (CORT) levels. Larval development was accelerated by high concentrations of chlorothalonil. Also, this pesticide in low and high concentrations increases the absolute values of lymphocytes. Tadpoles exposed to chlorothalonil increased the numbers of monocytes (in low concentrations), and lymphocytes (in high and low concentrations). The interactions of the low concentrations of both pesticides with and without the predator's presence also increased the number of lymphocytes. A combination of pesticides increases the number of lymphocytes in the blood due to synergistic cytotoxicity. This study proves that β- endosulfan elevates circulating CORT and thus generates physiological stress in tadpoles. Given that both pesticides are widely used within the distribution of L. taylori in Costa Rica, it is likely that tadpoles' development and immune function are altered by pesticide use. In combination with stressors such as emerging diseases and altered precipitation regimes, widespread agrochemical uses likely caused this species enigmatic decline in recent decades.
Collapse
Affiliation(s)
- Erick Ballestero
- Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 2060, Costa Rica.
| | - Federico Bolaños
- Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Clemens Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional, Heredia 3000, Costa Rica
| | - Randall R Jiménez
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany
| | - Fabian Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Mahmood Sasa
- Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
3
|
Yue X, Lin F, Gui S, Zhang S, Wu Z, Xiang Y, Xiao T, Xiao J, Cao H, Shi Y. Emamectin benzoate-induced toxicity affects intestinal epithelial integrity involving apoptosis. Food Chem Toxicol 2024; 190:114827. [PMID: 38901726 DOI: 10.1016/j.fct.2024.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The frequency presence of emamectin benzoate in agricultural production highlights the need for studying their toxicity against human intestinal epithelial barrier (IEB). Herein, we combined a Caco-2 cell model with transcriptome analysis to assess the intestinal toxicity of emamectin benzoate and its disease-causing potential. Results showed that the half maximal inhibitory concentration (IC50) of emamectin benzoate on Caco-2 cell viability after 24, 48, and 72 h of exposure were 18.1, 9.9, and 8.3 μM, respectively. Emamectin benzoate exposure enhanced the Caco-2 monolayer paracellular permeability, damaged the IEB, and increased cellular apoptosis. Key driver gene analysis of 42 apoptosis - related DEGs, identified 10 genes (XIAP, KRAS, MCL1, NRAS, PIK3CA, CYCS, MAPK8, CASP3, FADD, and TNFRSF10B) with the strongest correlation with emamectin benzoate - induced apoptosis. Transcriptomics identified 326 differentially expressed genes (DEGs, 204 upregulated and 122 downregulated). The functional terms of neurodegeneration - multiple diseases was enriched with the most number of DEGs, and the Parkinson disease pathway had the highest enrichment degree. Our findings provided support for environmental toxicology studies and the health risk assessment of emamectin benzoate.
Collapse
Affiliation(s)
- Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Shuyan Gui
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Sai Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Zongbin Wu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Tianxiang Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| |
Collapse
|
4
|
Qiu Q, Geng Z, Wang L, Zuo L, Deng M, Zhang H, Yang Y, Wang Y, Zhao Z, Wen H, Wang Q, Wang Y, He X, Li J, Wang Y, Zhang X, Liu M, Song X. Peiminine ameliorates Crohn's disease-like colitis by enhancing the function of the intestinal epithelial barrier through Nrf2/HO1 signal. Int Immunopharmacol 2024; 136:112380. [PMID: 38850790 DOI: 10.1016/j.intimp.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.
Collapse
Affiliation(s)
- Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Min Deng
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yiqun Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yijun Wang
- Bengbu Medical University, Bengbu, China
| | | | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Qiusheng Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yitong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xuxu He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
5
|
Tao H, Fang C, Xiao Y, Jin Y. The toxicity and health risk of chlorothalonil to non-target animals and humans: A systematic review. CHEMOSPHERE 2024; 358:142241. [PMID: 38705408 DOI: 10.1016/j.chemosphere.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
6
|
Wang YS, Yang SJ, Wan ZX, Shen A, Ahmad MJ, Chen MY, Huo LJ, Pan JH. Chlorothalonil exposure compromised mouse oocyte in vitro maturation through inducing oxidative stress and activating MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116100. [PMID: 38367607 DOI: 10.1016/j.ecoenv.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Xuan Wan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ao Shen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hua Pan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
7
|
Zhou Q, Cui J, Liu Y, Gu L, Teng X, Tang Y. EGCG alleviated Mn exposure-caused carp kidney damage via trpm2-NLRP3-TNF-α-JNK pathway: Oxidative stress, inflammation, and tight junction dysfunction. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108582. [PMID: 36754155 DOI: 10.1016/j.fsi.2023.108582] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 05/12/2023]
Abstract
Manganese (Mn), an essential trace metal element in organisms. However, with extensive use of Mn in industry and agriculture, Mn becomes a heavy metal pollutant in water. (-)-epigallocatechin gallate (EGCG), an tea polyphenols, can alleviate metal toxicity. Kidney is an important detoxifying organ, but toxic mechanism of Mn to kidneys is unclear, which needs further research. Carp is an Asian important economical species for fisheries and a biological model for studying environmental toxicology. Thus, we established excess Mn and EGCG-supplemented carp model to explore molecular mechanism of EGCG alleviating Mn-caused carp kidney damage. In this experiment, we set a control group (the Con group), a Mn treatment group (the Mn group, 90 mg/L Mn), a EGCG supplement group (the EG group, 75 mg/kg EGCG), and a combined group (the Mn + EG group, 90 mg/L Mn and 75 mg/kg EGCG). Transcriptome, qRT-PCR, kit, and morphology method results indicated that excess Mn caused oxidative stress, inflammatory damage, and tight junction dysfunction in carp kidneys. Excess Mn-triggered oxidative stress caused tight junction dysfunction via trpm2-NLRP3-TNF-α-JNK pathway and inflammation. EGCG reversed the harm of Mn to fish through the above mechanism. The findings of this study provided the evidence of EGCG-alleviated Mn poisoning and offered new ideas for reducing heavy metal environmental pollution risk.
Collapse
Affiliation(s)
- Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Lepeng Gu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, China.
| |
Collapse
|
8
|
Chlorothalonil exposure induces "liver-gut axis" disorder in mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1030-1033. [PMID: 35880573 PMCID: PMC9828307 DOI: 10.3724/abbs.2022078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|