1
|
Basso MF, Ribeiro TP, Lourenço-Tessutti IT, Oliveira NG, Mendes RAG, Fernandes NAN, Arraes FBM, Morgante CV, Hemerly AS, Grossi-de-Sa MF. RNAi-mediated down-regulation of the endogenous GhAIP10.1 and GhAIP10.2 genes in transgenic cotton (Gossypium hirsutum) enhances the earliness and yield of flower buds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109937. [PMID: 40347582 DOI: 10.1016/j.plaphy.2025.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Armadillo BTB Arabidopsis protein 1 (AtABAP1) plays a central role in the cell cycle. ABAP1-interacting protein 10 (AtAIP10, a Snf1 kinase interactor-like protein) is a protein that interacts with AtABAP1. Down-regulation of the AtAIP10 gene in A. thaliana resulted in an altered cell cycle and increased photosynthesis, chlorophyll content, metabolites, plant growth, root system, seed yield, and drought tolerance. Herein, aimed to test whether the down-regulation of GhAIP10 genes can stimulate the cotton plants in a manner similar to those observed in A. thaliana. Cotton transgenic events containing transgenes carrying RNA interfering (RNAi) or artificial miRNA (amiRNA) strategies were successfully generated to down-regulate the endogenous GhAIP10.1 and GhAIP10.2 genes. From these 15 transgenic events, five RNAi-based transgenic lines and five amiRNA-based transgenic events were selected for further analyses. The down-regulation of the GhAIP10.1 and GhAIP10.2 genes was confirmed by real-time RT-PCR. Phenotypic and physiological analyses revealed that these transgenic lines exhibited earlier production and opening of flower buds, increased vegetative growth over time and root biomass, no reduction in susceptibility to root-knot nematodes, and improved drought tolerance indicated by a higher photosynthetic rate and better intrinsic water-use efficiency. Based on the high identity of amino acid sequences, motifs, domains, subcellular localization, tertiary structure, down-regulation of GhABAP1 (partner of GhAIP10), up-regulation of GhCdt1 (a marker of the ABAP1 network), up-regulation of GhCyclinB1 (a marker of the cell cycle), up-regulation of GhAP3 (involved in vegetative to reproductive transition), and the up-regulation of CAB3, NDA1, DJC22, and DNAJ11 genes (involved in plant resilience) suggested that GhAIP10.1 and GhAIP10.2 proteins may act in cotton similarly to the AtAIP10 protein in A. thaliana. Furthermore, GhAIP10.1 and GhAIP10.2 genes are suggested as biotechnological targets for cotton genetic engineering based on genome editing.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Reneida Aparecida Godinho Mendes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | | | - Fabricio Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília- DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande-MS, Brazil.
| |
Collapse
|
2
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
EBF1 Gene mRNA Levels in Maternal Blood and Spontaneous Preterm Birth. Reprod Sci 2020; 27:316-324. [PMID: 32046385 DOI: 10.1007/s43032-019-00027-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 01/22/2023]
Abstract
Genetic variants of six genes (EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C) have been linked recently to gestational duration and/or spontaneous preterm birth (sPTB). Our goal was to examine sPTB in relation to maternal blood mRNA levels of these genes. We used a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2 and 3 that included women with sPTB (n = 51) and term births (n = 106) matched for maternal age, race/ethnicity, pre-pregnancy body mass index, smoking during pregnancy, and parity. T tests were used to examine mRNA mean differences (sPTB vs term) within and across trimesters, and logistic regression models with mRNA quartiles were applied to assess associations between candidate gene mRNA levels and sPTB. Based on these analyses, one significant candidate gene was used in a Gene Set Enrichment Analysis (GSEA) to identify related gene sets. These gene sets were then compared with the ones previously linked to sPTB in the same samples. Our results indicated that among women in the lowest quartile of EBF1 mRNA in the 2nd or 3rd trimester, the odds ratio for sPTB was 2.86 (95%CI 1.08, 7.58) (p = 0.0349, false discovery rate (FDR) = 0.18) and 4.43 (95%CI 1.57, 12.50) (p = 0.0049, FDR = 0.06), respectively. No other candidate gene mRNAs were significantly associated with sPTB. In GSEA, 24 downregulated gene sets were correlated with 2nd trimester low EBF1 mRNA and part of previous sPTB-associated gene sets. In conclusion, mRNA levels of EBF1 in maternal blood may be useful in detecting increased risk of sPTB as early as 2nd trimester. The potential underlying mechanism might involve maternal-fetal immune and cell cycle/apoptosis pathways.
Collapse
|
4
|
Ganaie SS, Zou W, Xu P, Deng X, Kleiboeker S, Qiu J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog 2017; 13:e1006370. [PMID: 28459842 PMCID: PMC5426800 DOI: 10.1371/journal.ppat.1006370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. Human parvovirus B19 (B19V) infection can cause severe hematological disorders, a direct consequence of the death of infected human erythroid progenitor cells (EPCs) of the bone marrow and fetal liver. B19V replicates autonomously in human EPCs, and the erythropoietin (EPO) and EPO-receptor (EPO-R) signaling is required for productive B19V replication. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling plays a key role in B19V replication. Here, we identify that phosphorylated STAT5 directly interacts with B19V replication origins and with minichromosome maintenance (MCM) complex in human EPCs, and that it functions as a scaffold protein to bring MCM to the viral replication origins and thus plays a key role in B19V DNA replication. Importantly, pimozide, a STAT5 phosphorylation-specific inhibitor and an FDA-approved drug, abolishes B19V replication in ex vivo expanded human EPCs; therefore, pimozide has the potential to be used as an antiviral drug for treatment of B19V-caused hematological disorders.
Collapse
Affiliation(s)
- Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Wei Zou
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Steve Kleiboeker
- Department of Research and Development, Viracor Eurofins Laboratories, Lee’s Summit, Missouri, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
6
|
Affected chromosome homeostasis and genomic instability of clonal yeast cultures. Curr Genet 2015; 62:405-18. [PMID: 26581629 PMCID: PMC4826422 DOI: 10.1007/s00294-015-0537-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events—disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.
Collapse
|
7
|
Mazurczyk M, Rybaczek D. Replication and re-replication: Different implications of the same mechanism. Biochimie 2014; 108:25-32. [PMID: 25446651 DOI: 10.1016/j.biochi.2014.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022]
Abstract
Replication is a process which provides two copies of genetic material to a mother cell that are essential for passing complete genetic information to daughter cells. Despite the extremely precise control of this process, regulation of replication can be impaired. This may trigger e.g. re-replication which leads to an increase in the total DNA content in a cell and, depending on the intensity, may result in gene amplification, genomic instability or apoptosis. Both replication and re-replication require pre-replication complex assembly, licensing, firing and initiation of DNA synthesis. Implications of each process in a cell are very different and all such possibilities are under intensive research because in both processes the same protein apparatus is used to carry out DNA synthesis. Therefore this article is meant to show the consequences of the same mechanism underlying two different processes.
Collapse
Affiliation(s)
- Michalina Mazurczyk
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
8
|
Kennedy-Darling J, Guillen-Ahlers H, Shortreed MR, Scalf M, Frey BL, Kendziorski C, Olivier M, Gasch AP, Smith LM. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae. J Proteome Res 2014; 13:3810-25. [PMID: 24999558 PMCID: PMC4123949 DOI: 10.1021/pr5004938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
DNA–protein
interactions play critical roles in the control
of genome expression and other fundamental processes. An essential
element in understanding how these systems function is to identify
their molecular components. We present here a novel strategy, Hybridization
Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP),
to identify proteins that are interacting with any given region of
the genome. This technology identifies and quantifies the proteins
that are specifically interacting with a genomic region of interest
by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric
identification and quantification of associated proteins. We demonstrate
the utility of HyCCAPP by identifying proteins associated with three
multicopy and one single-copy loci in yeast. In each case, a locus-specific
pattern of target-associated proteins was revealed. The binding of
previously unknown proteins was confirmed by ChIP in 11 of 17 cases.
The identification of many previously known proteins at each locus
provides strong support for the ability of HyCCAPP to correctly identify
DNA-associated proteins in a sequence-specific manner, while the discovery
of previously unknown proteins provides new biological insights into
transcriptional and regulatory processes at the target locus.
Collapse
Affiliation(s)
| | - Hector Guillen-Ahlers
- ‡Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | | | | | | | | | - Michael Olivier
- ‡Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | | | | |
Collapse
|
9
|
Evans Braun T, Poole E, Sinclair J. Depletion of cellular pre-replication complex factors results in increased human cytomegalovirus DNA replication. PLoS One 2012; 7:e36057. [PMID: 22586460 PMCID: PMC3346814 DOI: 10.1371/journal.pone.0036057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
Although HCMV encodes many genes required for the replication of its DNA genome, no HCMV-encoded orthologue of the origin binding protein, which has been identified in other herpesviruses, has been identified. This has led to speculation that HCMV may use other viral proteins or possibly cellular factors for the initiation of DNA synthesis. It is also unclear whether cellular replication factors are required for efficient replication of viral DNA during or after viral replication origin recognition. Consequently, we have asked whether cellular pre-replication (pre-RC) factors that are either initially associated with cellular origin of replication (e.g. ORC2), those which recruit other replication factors (e.g. Cdt1 or Cdc6) or those which are subsequently recruited (e.g. MCMs) play any role in the HCMV DNA replication. We show that whilst RNAi-mediated knock-down of these factors in the cell affects cellular DNA replication, as predicted, it results in concomitant increases in viral DNA replication. These data show that cellular factors which initiate cellular DNA synthesis are not required for the initiation of replication of viral DNA and suggest that inhibition of cellular DNA synthesis, in itself, fosters conditions which are conducive to viral DNA replication.
Collapse
Affiliation(s)
- Tamara Evans Braun
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Chen W, Feng P, Lin H. Prediction of replication origins by calculating DNA structural properties. FEBS Lett 2012; 586:934-8. [PMID: 22449982 DOI: 10.1016/j.febslet.2012.02.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
In this study, we introduced two DNA structural characteristics, namely, bendability and hydroxyl radical cleavage intensity to analyze origin of replication (ORI) in the Saccharomyces cerevisiae genome. We found that both DNA bendability and cleavage intensity in core replication regions were significantly lower than in the linker regions. By using these two DNA structural characteristics, we developed a computational model for ORI prediction and evaluated the model in a benchmark dataset. The predictive performance of the jackknife cross-validation indicates that DNA bendability and cleavage intensity have the ability to describe core replication regions and our model is effective in ORI prediction.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, School of Sciences, Hebei United University, Tangshan, China.
| | | | | |
Collapse
|
11
|
Li J, Deng M, Wei Q, Liu T, Tong X, Ye X. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem 2011; 286:39776-85. [PMID: 21965652 DOI: 10.1074/jbc.m111.226464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MCM2-7 proteins form a stable heterohexamer with DNA helicase activity functioning in the DNA replication of eukaryotic cells. The MCM2-7 complex is loaded onto chromatin in a cell cycle-dependent manner. The phosphorylation of MCM2-7 proteins contributes to the formation of the MCM2-7 complex. However, the regulation of specific MCM phosphorylation still needs to be elucidated. In this study, we demonstrate that MCM3 is a substrate of cyclin E/Cdk2 and can be phosphorylated by cyclin E/Cdk2 at Thr-722. We find that the MCM3 T722A mutant binds chromatin much less efficiently when compared with wild type MCM3, suggesting that this phosphorylation site is involved in MCM3 loading onto chromatin. Interestingly, overexpression of MCM3, but not MCM3 T722A mutant, inhibits the S phase entry, whereas it does not affect the exit from mitosis. Knockdown of MCM3 does not affect S phase entry and progression, indicating that a small fraction of MCM3 is sufficient for normal S phase completion. These results suggest that excess accumulation of MCM3 protein onto chromatin may inhibit DNA replication. Other studies indicate that excess of MCM3 up-regulates the phosphorylation of CHK1 Ser-345 and CDK2 Thr-14. These data reveal that the phosphorylation of MCM3 contributes to its function in controlling the S phase checkpoint of cell cycle in addition to the regulation of formation of the MCM2-7 complex.
Collapse
Affiliation(s)
- Junhui Li
- Center for Molecular Immunology, Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|