1
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Guo X, Jin W, Xing Y. Levels of asymmetric dimethylarginine in plasma and aqueous humor: a key risk factor for the severity of fibrovascular proliferation in proliferative diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1364609. [PMID: 38933824 PMCID: PMC11200173 DOI: 10.3389/fendo.2024.1364609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Proliferative diabetic retinopathy (PDR) is a common diabetes complication, significantly impacting vision and quality of life. Previous studies have suggested a potential link between arginine pathway metabolites and diabetic retinopathy (DR). Connective tissue growth factor (CTGF) plays a role in the occurrence and development of fibrovascular proliferation (FVP) in PDR patients. However, the relationship between arginine pathway metabolites and FVP in PDR remains undefined. This study aimed to explore the correlation between four arginine pathway metabolites (arginine, asymmetric dimethylarginine[ADMA], ornithine, and citrulline) and the severity of FVP in PDR patients. Methods In this study, plasma and aqueous humor samples were respectively collected from 30 patients with age-related cataracts without diabetes mellitus (DM) and from 85 PDR patients. The PDR patients were categorized as mild-to-moderate or severe based on the severity of fundal FVP. The study used Kruskal-Wallis test to compare arginine, ADMA, ornithine, and citrulline levels across three groups. Binary logistic regression identified risk factors for severe PDR. Spearman correlation analysis assessed associations between plasma and aqueous humor metabolite levels, and between ADMA and CTGF levels in aqueous humor among PDR patients. Results ADMA levels in the aqueous humor were significantly greater in patients with severe PDR than in those with mild-to-moderate PDR(P=0.0004). However, the plasma and aqueous humor levels of arginine, ornithine, and citrulline did not significantly differ between mild-to-moderate PDR patients and severe PDR patients (P>0.05). Binary logistic regression analysis indicated that the plasma (P=0.01) and aqueous humor (P=0.006) ADMA levels in PDR patients were risk factors for severe PDR. Furthermore, significant correlations were found between plasma and aqueous humor ADMA levels (r=0.263, P=0.015) and between aqueous humor ADMA and CTGF levels (r=0.837, P<0.001). Conclusion Elevated ADMA levels in plasma and aqueous humor positively correlate with the severity of FVP in PDR, indicating ADMA as a risk factor for severe PDR.
Collapse
Affiliation(s)
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhang Y, Chen P, Wang B, Tang X, Wei Y, Cao W, Tang L, Wang Z, Zhao N. Containing anti-PLA2R IgG antibody induces podocyte injury in idiopathic membranous nephropathy. Ren Fail 2023; 45:2271986. [PMID: 37905942 PMCID: PMC11001355 DOI: 10.1080/0886022x.2023.2271986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Idiopathic membranous nephropathy is widely recognized as an autoimmune kidney disease that is accompanied by the discovery of several autoantibodies, and the antibody subclass in the circulation of patients with iMN is mainly IgG. However, the direct pathogenic effect of the containing anti-PLA2R IgG antibody on podocytes is not clear.Method: A protein G affinity chromatography column was used to purify serum IgG antibodies. Containing anti-PLA2R IgG antibodies from iMN patients and IgG from healthy controls were also obtained. Based on the established in vitro podocyte culture system, purified IgG antibodies from the two groups were used to stimulate podocytes, and the expression of essential podocyte proteins (podocin), the levels of inflammatory cytokines in the cell supernatant, cytoskeletal disorders, and podocyte apoptosis were analyzed.Results: Compared with that in the normal IgG group, the expression of podocin and podocin mRNA was reduced (p = 0.016 and p = 0.005, respectively), the fluorescence intensity of podocin on the surface of podocytes was reduced, the cytoskeleton of podocytes was disordered and reorganized, and the ratio of podocyte apoptosis was increased in the iMN group (p = 0.008).Conclusion: The containing anti-PLA2R IgG antibody might have a direct damaging effect on podocytes in idiopathic membranous nephropathy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Baobao Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Xueqing Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Lijun Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Na Zhao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| |
Collapse
|
5
|
Wójcicka G, Pradiuch A, Fornal E, Stachniuk A, Korolczuk A, Marzec-Kotarska B, Nikolaichuk H, Czechowska G, Kozub A, Trzpil A, Góralczyk A, Bełtowski J. The effect of exenatide (a GLP-1 analogue) and sitagliptin (a DPP-4 inhibitor) on asymmetric dimethylarginine (ADMA) metabolism and selected biomarkers of cardiac fibrosis in rats with fructose-induced metabolic syndrome. Biochem Pharmacol 2023; 214:115637. [PMID: 37290595 DOI: 10.1016/j.bcp.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, is a risk factor for endothelial dysfunction, a common pathophysiological denominator for both atherogenesis and cardiac fibrosis. We aimed to investigate whether the cardioprotective and antifibrotic effects of incretin drugs, exenatide and sitagliptin, may be associated with their ability to affect circulating and cardiac ADMA metabolism. Normal and fructose-fed rats were treated with sitagliptin (5.0/10 mg/kg) or exenatide (5/10 µg/kg) for 4 weeks. The following methods were used: LC-MS/MS, ELISA, Real-Time-PCR, colorimetry, IHC and H&E staining, PCA and OPLS-DA projections. Eight-week fructose feeding resulted in an increase in plasma ADMA and a decrease in NO concentration. Exenatide administration into fructose-fed rats reduced the plasma ADMA level and increased NO level. In the heart of these animals exenatide administration increased NO and PRMT1 level, reduced TGF-ß1, α-SMA levels and COL1A1 expression. In the exenatide treated rats renal DDAH activity positively correlated with plasma NO level and negatively with plasma ADMA level and cardiac α-SMA concentration. Sitagliptin treatment of fructose-fed rats increased plasma NO concentration, reduced circulating SDMA level, increased renal DDAH activity and reduced myocardial DDAH activity. Both drugs attenuated the myocardial immunoexpression of Smad2/3/P and perivascular fibrosis. In the metabolic syndrome condition both sitagliptin and exenatide positively modulated cardiac fibrotic remodeling and circulating level of endogenous NOS inhibitors but had no effects on ADMA levels in the myocardium.
Collapse
Affiliation(s)
- G Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Pradiuch
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - E Fornal
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Stachniuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Korolczuk
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - B Marzec-Kotarska
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - H Nikolaichuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - G Czechowska
- Department of Pharmacology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Kozub
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Trzpil
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Góralczyk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - J Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
6
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
8
|
Zhao WC, Li G, Huang CY, Jiang JL. Asymmetric dimethylarginine: An crucial regulator in tissue fibrosis. Eur J Pharmacol 2019; 854:54-61. [PMID: 30951718 DOI: 10.1016/j.ejphar.2019.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Fibrosis is a reparative process with very few therapeutic options to prevent its progression to organ dysfunction. Chronic fibrotic diseases contribute to an estimated 45% of all death in the industrialized world. Asymmetric dimethylarginine (ADMA), an endothelial nitric oxide synthase inhibitor, plays a crucial role in the pathogenesis of various cardiovascular diseases associated with endothelial dysfunction. Recent reports have focused on ADMA in the pathogenesis of tissue fibrosis. This review discusses the current knowledge about ADMA biology, its association with risk factors of established fibrotic diseases and the potential pathophysiological mechanisms implicating ADMA in the process of tissue fibrosis.
Collapse
Affiliation(s)
- Wei-Chen Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Faculty of Medical Public Courses, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong, 510520, China
| | - Chu-Yi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Jun-Lin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Chen JT, Wei L, Chen TL, Huang CJ, Chen RM. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol 2018; 14:709-720. [PMID: 29888644 DOI: 10.1080/17425255.2018.1487397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful. Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis. Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine-drug interactions during long-term use in the clinic.
Collapse
Affiliation(s)
- Jui-Tai Chen
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Wei
- c Department of Neurosurgery, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ta-Liang Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan
| | - Chun-Jen Huang
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ruei-Ming Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan.,e Graduate Institute of Medical Sciences, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,f Cellular Physiology and Molecular Image Research Center, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| |
Collapse
|
10
|
Liu Z, Wang J, Xing W, Peng Y, Huang Y, Fan X. Role of DDAH/ADMA pathway in TGF-β1-mediated activation of hepatic stellate cells. Mol Med Rep 2017; 17:2549-2556. [PMID: 29207068 DOI: 10.3892/mmr.2017.8107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is catalyzed by the enzyme dimethylarginine dimethylaminohydrolase (DDAH) in humans, and the role for ADMA has been associated with hepatic fibrogenesis. Transforming growth factor‑β (TGF‑β) has been shown to mediate the myofibroblastic transformation of quiescent hepatic stellate cells (HSCs), a pivotal step in liver fibrogenesis. However, the underlying molecular mechanisms are not well understood. Accumulation of ADMA due to low activity of DDAH has been reported to be associated with liver damage and hepatic fibrosis. In this study, the role of the DDAH/ADMA pathway in the TGF‑β1‑induced HSC activation was assessed. Freshly harvested primary HSCs from rat liver were used in this study. It was demonstrated that TGF‑β1 treatment significantly suppressed the DDAH protein expression and activity, and increased levels of ADMA in the culture medium of rat primary HSCs. Notably, the TGF‑β1‑mediated effects on DDAH/ADMA were significantly abrogated by the p38 mitogen activated protein kinase specific inhibitor, SB203580. Furthermore, it was demonstrated that excessive ADMA led to an increase in the number of TGF‑β1‑positive HSCs and induced the expression of α‑smooth muscle actin and collagen type I in rat primary HSCs. In addition, rat primary HSCs exposed to excessive ADMA showed a significant increase in the expressions of α‑SMA and collagen type I. Finally, it was revealed that ADMA treatment promoted the proliferation of rat primary HSCs. In conclusion, the results obtained from the study suggest a potentially novel role for the ADMA/DDAH1 signaling pathway in TGF‑β1‑induced HSC activation, and along with the studies of others, suppression of the ADMA/DDAH1 pathway may be an alterative approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Wang
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yingqiong Peng
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yan Huang
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuegong Fan
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
11
|
Luo J, Chen G, Liang M, Xie A, Li Q, Guo Q, Sharma R, Cheng J. Reduced Expression of Glutathione S-Transferase α 4 Promotes Vascular Neointimal Hyperplasia in CKD. J Am Soc Nephrol 2017; 29:505-517. [PMID: 29127112 DOI: 10.1681/asn.2017030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)-mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE-induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE-induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guang Chen
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Ming Liang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, China
| | - Aini Xie
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajendra Sharma
- Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
12
|
Rysz J, Gluba-Brzózka A, Franczyk B, Jabłonowski Z, Ciałkowska-Rysz A. Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. Int J Mol Sci 2017; 18:E1702. [PMID: 28777303 PMCID: PMC5578092 DOI: 10.3390/ijms18081702] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
In its early stages, symptoms of chronic kidney disease (CKD) are usually not apparent. Significant reduction of the kidney function is the first obvious sign of disease. If diagnosed early (stages 1 to 3), the progression of CKD can be altered and complications reduced. In stages 4 and 5 extensive kidney damage is observed, which usually results in end-stage renal failure. Currently, the diagnosis of CKD is made usually on the levels of blood urea and serum creatinine (sCr), however, sCr has been shown to be lacking high predictive value. Due to the development of genomics, epigenetics, transcriptomics, proteomics, and metabolomics, the introduction of novel techniques will allow for the identification of novel biomarkers in renal diseases. This review presents some new possible biomarkers in the diagnosis of CKD and in the prediction of outcome, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), uromodulin, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), miRNA, ncRNA, and lincRNA biomarkers and proteomic and metabolomic biomarkers. Complicated pathomechanisms of CKD development and progression require not a single marker but their combination in order to mirror all types of alterations occurring in the course of this disease. It seems that in the not so distant future, conventional markers may be exchanged for new ones, however, confirmation of their efficacy, sensitivity and specificity as well as the reduction of analysis costs are required.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, WAM Teaching Hospital, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Zbigniew Jabłonowski
- I Department of Urology, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Aleksandra Ciałkowska-Rysz
- Palliative Medicine Unit, Chair of Oncology, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| |
Collapse
|
13
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
14
|
Sun Q, Liu L, Roth M, Tian J, He Q, Zhong B, Bao R, Lan X, Jiang C, Sun J, Yang X, Lu S. PRMT1 Upregulated by Epithelial Proinflammatory Cytokines Participates in COX2 Expression in Fibroblasts and Chronic Antigen-Induced Pulmonary Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:298-306. [PMID: 26026059 DOI: 10.4049/jimmunol.1402465] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/04/2015] [Indexed: 01/30/2023]
Abstract
Protein arginine methyltransferase (PRMT)1, methylating both histones and key cellular proteins, has emerged as a key regulator of various cellular processes. This study aimed to identify the mechanism that regulates PRMT1 in chronic Ag-induced pulmonary inflammation (AIPI) in the E3 rat asthma model. E3 rats were challenged with OVA for 1 or 8 wk to induce acute or chronic AIPI. Expression of mRNAs was detected by real-time quantitative PCR. PRMT1, TGF-β, COX2, and vascular endothelial growth factor protein expression in lung tissues was determined by immunohistochemistry staining and Western blotting. In the in vitro study, IL-4-stimulated lung epithelial cell (A549) medium (ISEM) with or without anti-TGF-β Ab was applied to human fibroblasts from lung (HFL1). The proliferation of HFL1 was determined by MTT. AMI-1 (pan-PRMT inhibitor) was administered intranasally to chronic AIPI rats to determine PRMT effects on asthmatic parameters. In lung tissue sections, PRMT1 expression was significantly upregulated, mainly in epithelial cells, in acute AIPI lungs, whereas it was significantly upregulated mainly in fibroblasts in chronic AIPI lungs. The in vitro study revealed that ISEM elevates PRMT1, COX2, and vascular endothelial growth factor expressions, and it promoted fibroblast proliferation. The application of anti-TGF-β Ab suppressed COX2 upregulation by ISEM. AMI-1 inhibited the expression of COX2 in TGF-β-stimulated cells. In the in vivo experiment, AMI-1 administered to AIPI rats reduced COX2 production and humoral immune response, and it abrogated mucus secretion and collagen generation. These findings suggested that TGF-β-induced PRMT1 expression participates in fibroblast proliferation and chronic airway inflammation in AIPI.
Collapse
Affiliation(s)
- Qingzhu Sun
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China; University Hospital Basel, University of Basel, 4031 Basel, Switzerland; and
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Michael Roth
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland; and
| | - Jia Tian
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qirui He
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Bo Zhong
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Ruanjuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China;
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, People's Republic of China; Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China
| |
Collapse
|
15
|
Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. J Transl Med 2014; 94:1068-82. [PMID: 25068653 DOI: 10.1038/labinvest.2014.100] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022] Open
Abstract
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-β1 and TGF-β2 and p38 MAPK phosphorylation. Downregulation of TGF-β1 and TGF-β2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-β secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-β-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.
Collapse
|
16
|
Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci 2014; 21:294-9. [PMID: 25183938 DOI: 10.1016/j.sjbs.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive pathological condition marked by deteriorating renal function over time. Diagnostic of kidney disease depend on serum creatinine level and glomerular filtration rate which is detectable when kidney function become half. The detection of kidney damage in an early stage needs robust biomarkers. Biomarkers allow monitoring the disease progression at initial stages of disease. On the onset of impairment in cellular organization there is perturbation in signaling molecules which are either up-regulated or down-regulated and act as an indicator or biomarker of diseased stage. This review compiled the cell signaling of different kidney biomarkers associated with the onset of chronic kidney diseases. Delay in diagnosis of CKD will cause deterioration of nephron function which leads to End stage renal disease and at that point patients require dialysis or kidney transplant. Detailed information on the complex network in signaling pathway leading to a coordinated pattern of gene expression and regulation in CKD will undoubtedly provide important clues to develop novel prognostic and therapeutic strategies for CKD.
Collapse
Affiliation(s)
- Zeba Khan
- Bhopal Memorial Hospital and Research Centre, Raisen Bypass Near Karond Square, Bhopal 462038, M.P., India
| | - Manoj Pandey
- Bhopal Memorial Hospital and Research Centre, Raisen Bypass Near Karond Square, Bhopal 462038, M.P., India
| |
Collapse
|
17
|
Wang Y, Liang A, Luo J, Liang M, Han G, Mitch WE, Cheng J. Blocking Notch in endothelial cells prevents arteriovenous fistula failure despite CKD. J Am Soc Nephrol 2014; 25:773-83. [PMID: 24480830 DOI: 10.1681/asn.2013050490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neointima formation causes the failure of 60% of arteriovenous fistulas (AVFs) within 2 years. Neointima-forming mechanisms are controversial but possibly linked to excess proinflammatory responses and dysregulated Notch signaling. To identify how AVFs fail, we anastomosed the carotid artery to the internal jugular vein in normal and uremic mice and compared these findings with those in failed AVFs from patients with ESRD. Endothelial cells (ECs) of AVFs in uremic mice or patients expressed mesenchymal markers (FSP-1 and/or α-SMA) and exhibited increased expression and nuclear localization of Notch intracellular domain compared with ECs of AVFs in pair-fed control mice. Furthermore, expression of VE-Cadherin decreased, whereas expression of Notch1 and -4, Notch ligands, the downstream transcription factor of Notch, RBP-Jκ, and Notch target genes increased in ECs of AVFs in uremic mice. In cultured ECs, ectopic expression of Notch ligand or treatment with TGF-β1 triggered the expression of mesenchymal markers and induced endothelial cell barrier dysfunction, both of which were blocked by Notch inhibition or RBP-Jκ knockout. Furthermore, Notch-induced defects in barrier function, invasion of inflammatory cells, and neointima formation were suppressed in mice with heterozygous knockdown of endothelial-specific RBP-Jκ. These results suggest that increased TGF-β1, a complication of uremia, activates Notch in endothelial cells of AVFs, leading to accelerated neointima formation and AVF failure. Suppression of Notch activation could be a strategy for improving AFV function in uremia.
Collapse
Affiliation(s)
- Yun Wang
- Division of Nephrology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo W, Zhang D, Wang L, Zhang Y, Liu W. Disruption of asymmetric dimethylarginine-induced RelA/P65 association with actin in endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:229-35. [PMID: 23296075 DOI: 10.1093/abbs/gms120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) activates nuclear factor (NF)-κB in endothelial cells, while actin-stabilizing or -destabilizing drugs prevent ADMA-induced activation of NF-κB. Here we investigated how actin-targeting drugs regulated ADMA-induced NF-κB activation in endothelial cells. Human umbilical vein endothelial cells were treated with ADMA for 24 h in the absence and presence of cytochalasin D or jasplakinolide. Expression levels of proteins and genes were measured by immunoblotting and reverse-transcription polymerase chain reaction, respectively. Chromatin immunoprecipitation was used to detect the binding of NF-κB to the vascular cell adhesion molecule 1 (VCAM-1) promoter. The association of actin with RelA/P65 was detected by immunoprecipitation. It was demonstrated that ADMA induced IκBα degradation, increased nuclear RelA/P65 translocation, and promoted the binding of NF-κB to the VCAM-1 promoter. Consequently, this increased the expression of VCAM-1. In parallel studies, actin-stabilizing and -destabilizing drugs decreased ADMA-induced RelA/P65 nuclear translocation, interfered with NF-κB binding to the VCAM-1 promoter and prevented the expression of VCAM-1. This was independent of total RelA/P65 levels and ADMA-induced IκBα degradation. Most importantly, the association of RelA/P65 with actin was increased after stimulation with ADMA, and impaired after treatment with actin-targeting drugs. In brief, actin-stabilizing or -destabilizing drugs interfere with the ADMA-induced association of RelA/P65 with actin, and consequently disrupt NF-κB activation.
Collapse
Affiliation(s)
- Weikang Guo
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China
| | | | | | | | | |
Collapse
|