1
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Zeng Y, Fan N, Gu X, Zhang Y, Min W, Mao Q, Qian Q. Characteristics of gut microbiota and serum metabolism in patients with atopic dermatitis. Skin Res Technol 2024; 30:e13792. [PMID: 38940462 PMCID: PMC11212066 DOI: 10.1111/srt.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 15%-30% of children and 10% of adults globally, with its incidence being influenced by genetic, environmental, and various other factors. While the immune plays a crucial role in the development, the composition of gut microbiota and serum metabolites also contribute to its pathogenesis. SUBJECT Study the characteristics of gut microbiota and serum metabolites in patients with atopic dermatitis METHOD: In this study, we collected stool and serum samples from 28 AD patients and 23 healthy individuals (NC) for metagenomic sequencing of gut microbiota and non-targeted metabolomic sequencing of serum. RESULT Our results revealed a lower diversity of gut microbiota in the AD group compared to the NC group. The predominant Phylum in AD patients were Bacteroidetes, Pseudomonas, and Verrucomicrobia, with the most dominant bacterial genus being Faecalibacterium. At the species level, Prevotella copri and Faecalibacterium prausnitzii were found to be the most abundant bacteria. Significant differences in serum metabolite profiles were observed between NC and AD patients, with noticeable variations in metabolite expression levels. The majority of metabolites in the serum of AD patients exhibited low expression, while a few showed high expression levels. Notably, metabolites such as Cholesterol glucuronide, Styrene, Lutein, Betaine, Phosphorylcholine, Taurine, and Creatinine displayed the most pronounced alterations. CONCLUSION These findings contribute to a further understanding of the complexities underlying this disease.
Collapse
Affiliation(s)
- Yibin Zeng
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ni Fan
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoli Gu
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiwen Zhang
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Min
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiuyu Mao
- Department of DermatologyMinhang HospitalFudan UniversitShanghaiChina
| | - Qihong Qian
- Department of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
4
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
5
|
Esan OO, Maikifi AS, Esuola LO, Ajibade TO, Adetona MO, Aina OO, Oyagbemi AA, Adejumobi OA, Omobowale TO, Oladele OA, Oguntibeju OO, Nwulia E, Yakubu MA. Taurine mitigates sodium arsenite–induced cardiorenal dysfunction in cockerel chicks: from toxicological, biochemical, and immunohistochemical stand-points. COMPARATIVE CLINICAL PATHOLOGY 2023; 32:769-782. [DOI: 10.1007/s00580-023-03485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/26/2023] [Indexed: 01/05/2025]
|
6
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
7
|
Mo Q, Kulyar MFEA, Ding Y, Zhang Y, Pan H, Li J. Thiram induces myocardial oxidative damage and apoptosis in broilers via interfering their cardiac metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114225. [PMID: 36288636 DOI: 10.1016/j.ecoenv.2022.114225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Thiram is a dithiocarbamate pesticide extensively used as a fungicide to preserve crops and seeds. Long-term exposure to thiram causes potential harm to the health of human beings and animals. So far, most of the researches on thiram focused on erythrocyte toxicity, immune system, kidney damage, and tibial dyschondroplasia; however, there is less data on cardiac toxicity. In this study, we examined cardiac histopathology, inflammatory factors, oxidative stress indicators, and apoptosis markers in the heart of broilers that were exposed to thiram. According to our findings, the continuous exposure to thiram caused pathological changes and abnormal function of myocardial tissues with increased level of inducible nitric oxide synthase (iNOS), inflammatory factors (IL-6, IL-8, TNF-α and NF-κB), and decreased level of anti-inflammatory factor (IL-10). In addition, thiram significantly upregulated the protein expression of cleaved-caspase 3, cleaved-PARP, and caused cardiomyocyte apoptosis. Meanwhile, the expression of heat shock proteins (HSP60, HSP70, HSP90) markedly decreased in the thiram-treated groups. An excessive accumulation of peroxidation products (MDA, H2O2), a decrease in T-AOC, and antioxidant activity enzymes (T-SOD, GST and GPX) were also noticed, all of which led to oxidative stress and activation of Nrf2 signal pathway by up-regulating key target genes (HO-1 and SODs). Thiram-induced metabolites were further identified via non-targeted metabonomic analysis. Correlation analysis revealed eighteen differentially expressed metabolites, closely related to cardiac injury. Importantly, thiram primarily affected the taurine and hypotaurine metabolism, pyrimidine metabolism as well as glycerol metabolism. Collectively, our study suggests that thiram could cause cardiotoxicity by interfering with taurine and hypotaurine metabolism, pyrimidine metabolism, and glycerolipid metabolism, which further induce oxidative stress via triggering Nrf2 signal pathway. This study may provide new evidence for the molecular mechanism of cardiotoxicity caused by thiram and resonate the alarm for animals and workers who have been exposed to thiram for a long time.
Collapse
Affiliation(s)
- Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
8
|
Zhuo P, Ding K, Deng B, Lai K, Zhang S, Zhang L, Yang H. The effect of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) on locomotor behaviour and muscle physiology of the sea cucumber Apostichopus japonicus. MARINE POLLUTION BULLETIN 2022; 185:114198. [PMID: 36274561 DOI: 10.1016/j.marpolbul.2022.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is the predominant congener of polybrominated diphenyl ethers, and it is also a persistent organic pollutant that with a higher detection rate in samples from environment and animals. To date, there have been few studies of the effects of BDE-47 on locomotion in sea cucumbers. In this study, we investigated the influence of different concentrations of BDE-47 (low: 0.1 μg/L; moderate: 1.0 μg/L; high: 10.0 μg/L) on locomotion of Apostichopus japonicus and evaluated changes in their muscle physiology using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The behavioural studies showed that the average and maximum velocity of movement decreased significantly in both the moderate and high BDE-47 groups after 1 day of exposure. In addition, levels of 55 metabolites were identified and characterized in the longitudinal muscle of A. japonicus exposed to BDE-47. The alteration of taurine and norepinephrine levels indicated that BDE-47 had drastic physiological effects on the longitudinal muscle of A. japonicus.
Collapse
Affiliation(s)
- Pengji Zhuo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; North China Sea Bureau of the Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Beini Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Kaiqi Lai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Shuangli Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
9
|
Yang L, Li Z, Ouyang Y. Taurine attenuates ER stress‑associated apoptosis and catabolism in nucleus pulposus cells. Mol Med Rep 2022; 25:172. [PMID: 35315493 PMCID: PMC8971911 DOI: 10.3892/mmr.2022.12688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleus pulposus (NP) apoptosis and subsequent excessive degradation of the extracellular matrix (ECM) are key pathological characteristics of intervertebral disc degeneration (IDD). The present study aims to examine the signaling processes underlying the effects of taurine on IDD, with specific focus on endoplasmic reticulum (ER) stress-mediated apoptosis and ECM degradation, in NP cells. To clarify the role of taurine in IDD, NP cells were treated with various concentrations of taurine and IL-1β or thapsigargin (TG). Cell Counting Kit-8, western blotting, TUNEL, immunofluorescence assays and reverse transcription-quantitative PCR were applied to measure cell viability, the expression of ER stress-associated proteins (GRP78, CHOP and caspase-12), apoptosis and the levels of metabolic factors associated with ECM (MMP-1, 3, 9, ADAMTS-4, 5 and collagen II), respectively. Taurine was found to attenuate ER stress and prevent apoptosis in NP cells induced by IL-1β treatment. Additionally, taurine significantly decreased the expression of ER stress-activated glucose regulatory protein 78, C/EBP homologous protein and caspase-12. TUNEL results revealed that taurine decreased the number of apoptotic TG-treated NP cells. TG-treated NP cells also exhibited characteristics of increased ECM degradation, supported by observations of increased MMP-1, MMP-3, MMP-9 and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 expression in addition to decreased collagen-II expression. However, taurine treatment significantly reversed all indicators of excessive ECM catabolism aforementioned. These data suggest that taurine can mediate protection against apoptosis and ECM degradation in NP cells by inhibiting ER stress, implicating therapeutic potential for the treatment of IDD.
Collapse
Affiliation(s)
- Liuxie Yang
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Zhenhuan Li
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Yueping Ouyang
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
10
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhang H, Guo J, Cui S, Zhou Y. Taurine Has Potential Protective Effects against the Chronic Cardiotoxicity Induced by Doxorubicin in Mice. Biol Pharm Bull 2021; 44:1732-1737. [PMID: 34719649 DOI: 10.1248/bpb.b21-00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer anthracycline drug; however, the cardiotoxicity limits its application. The aim of the present study was to investigate the potential protective effect of taurine against DOX-induced chronic cardiotoxicity in mice. We found that exogenous supplementation of taurine can inhibit the weight loss of mice caused by DOX. The increased activity of myocardial enzymes creatine kinase (CK) and lactate dehydrogenase (LDH) in response to DOX treatment were significantly hampered. In addition, taurine supplementation alleviated the decrease in superoxide dismutase (SOD) activity, glutathione (GSH) content, glutathione peroxidase 4 (Gpx4) expression, and the increase in malondialdehyde (MDA) content caused by DOX. Besides, taurine alleviated myocardial myofibrillar disruption and mitochondrial edema. Furthermore, our results showed that taurine decreased the expressions of cleaved caspase-3 and Bax/Bcl2, thereby inhibiting apoptosis. These collective data demonstrated that exogenous taurine supplementation has a potentially protective effect against the myocardial damage caused by doxorubicin in mice by enhancing antioxidant capacity and reducing oxidative damage and apoptosis.
Collapse
Affiliation(s)
| | - Jiajia Guo
- College of Veterinary Medicine, Yangzhou University
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
| |
Collapse
|
12
|
The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021; 26:molecules26164913. [PMID: 34443494 PMCID: PMC8400259 DOI: 10.3390/molecules26164913] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.
Collapse
|
13
|
Ye L, Yao Q, Xu F, He L, Ding J, Xiao R, Ding L, Luo B. Preparation and antitumor activity of triphenylphosphine-based mitochondrial targeting polylactic acid nanoparticles loaded with 7-hydroxyl coumarin. J Biomater Appl 2021; 36:1064-1075. [PMID: 34338057 DOI: 10.1177/08853282211037030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the low bioavailability and severe toxic side effects caused by the lack of selectivity of traditional chemotherapy drugs, the targeted delivery of chemotherapy drugs has become the key to tumor treatment. The activity and transmembrane potential of mitochondria in cancer cells were significantly higher than that of normal cells, making them a potential target for chemotherapeutic drug delivery. In this study, triphenylphosphine (TPP) based mitochondria targeting polylactic acid (PLLA) nanoparticles (TPP-PLLA NPs) were synthesized to improve the delivery efficiency of anticancer drugs. The carrier material was characterized by 1H NMR and FT-IR and 7-hydroxyl coumarin (7-HC) was successfully loaded into TPP-PLLA to form 7-HC/TPP-PLLA NPs. Further studies showed that TPP-PLLA NPs were primarily accumulated in the mitochondrial and 7-HC/TPP-PLLA NPs had higher antitumor activity. Taken together, our results indicated that TPP-PLLA NPs could be a promising mitochondria-targeted drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Lin Ye
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Fengnan Xu
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liu He
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jieqiong Ding
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ruolei Xiao
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Binhua Luo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
14
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
15
|
Baliou S, Goulielmaki M, Ioannou P, Cheimonidi C, Trougakos IP, Nagl M, Kyriakopoulos AM, Zoumpourlis V. Bromamine T (BAT) Exerts Stronger Anti-Cancer Properties than Taurine (Tau). Cancers (Basel) 2021; 13:E182. [PMID: 33430276 PMCID: PMC7825693 DOI: 10.3390/cancers13020182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. METHODS We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. RESULTS We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. CONCLUSIONS BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.
Collapse
Affiliation(s)
- Stella Baliou
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Maria Goulielmaki
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece;
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Markus Nagl
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anthony M. Kyriakopoulos
- Department of Research and Development, Nasco AD Biotechnology Laboratory, 11 Sachtouri Str, 18536 Piraeus, Greece;
| | - Vassilis Zoumpourlis
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| |
Collapse
|
16
|
Iezhitsa I, Agarwal R. New solutions for old challenges in glaucoma treatment: is taurine an option to consider? Neural Regen Res 2021; 16:967-971. [PMID: 33229737 PMCID: PMC8178787 DOI: 10.4103/1673-5374.297059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a range of progressive optic neuropathies characterized by progressive retinal ganglion cell loss and visual field defects. It is recognized as a leading cause of irreversible blindness affecting more than 70 million people worldwide. Currently, reduction of intraocular pressure, a widely recognized risk factor for glaucoma development, is the only pharmacological strategy for slowing down retinal ganglion cell loss and disease progression. However, retinal ganglion cell death and visual field loss have been observed in normotensive glaucoma, suggesting that the disease process is partially independent of intraocular pressure. Taurine is one of the agents that have attracted attention of researchers recently. Taurine has been shown to be involved in multiple cellular functions, including a central role as a neurotransmitter, as a trophic factor in the central nervous system development, as an osmolyte, as a neuromodulator, and as a neuroprotectant. It also plays a role in the maintenance of the structural integrity of the membranes and in the regulation of calcium transport and homeostasis. Taurine is known to prevent N-methyl-D-aspartic acid-induced excitotoxic injury to retinal ganglion cells. A recently published study clearly demonstrated that taurine prevents retinal neuronal apoptosis both in vivo and in vitro. Protective effect of taurine may be attributed to direct inhibition of apoptosis, an activation of brain derived neurotrophic factor-related neuroprotective mechanisms and reduction of retinal oxidative and nitrosative stresses. Further studies are needed to fully explore the potential of taurine as a neuroprotective agent, so that it can be applied in clinical practice, particularly for the treatment of glaucoma. The objective of current review was to summarize recent evidence on neuroprotective properties of taurine in glaucoma.
Collapse
Affiliation(s)
- Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Volgograd State Medical University, Research Centre for Innovative Medicines, Volgograd, Russian Federation
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
18
|
Rezaee-Tazangi F, Zeidooni L, Rafiee Z, Fakhredini F, Kalantari H, Alidadi H, Khorsandi L. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Reprod 2020; 24:428-435. [PMID: 32550655 PMCID: PMC7558901 DOI: 10.5935/1518-0557.20200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: This study was performed to investigate the protective effects of taurine (2-aminoethanesulfonic acid, TAU) on oxidative stress in the isolated mouse testicular mitochondria, mitochondrial membrane potential (MMP), viability and motility of the exposed sperms to the BPA. Methods: We treated epididymal spermatozoa obtained from mice and isolated mouse testicular mitochondria with BPA (0.8 mmol/mL) and various doses of TAU (5, 10, 30 and 50 µmol/L). We used the MTT assay and Rhodamine 123 uptake to assess sperm viability and MMP. We assessed the oxidative stress through measuring ROS (reactive oxygen species), MDA (malondialdehyde), GSH (glutathione), and SOD (super-oxide dismutase) levels in the testicular mitochondrial tissue. Results: BPA significantly elevated ROS, MDA and MMP levels, and markedly reduced SOD and GSH levels in the isolated mitochondria. BPA also considerably impaired spermatozoa viability and motility. Pretreatment with 30 and 50 µmol/L of TAU could considerably suppressed mitochondrial oxidative stress, enhanced MMP, and improved sperm motility and viability. Conclusion: TAU may attenuate the BPA-induced mitochondrial toxicity and impaired sperm motility via decreasing oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Rezaee-Tazangi
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Rafiee
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heybatollah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Mousavi K, Niknahad H, Ghalamfarsa A, Mohammadi H, Azarpira N, Ommati MM, Heidari R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp Hepatol 2020; 6:207-219. [PMID: 33145427 PMCID: PMC7592093 DOI: 10.5114/ceh.2020.99513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cirrhosis-induced heart injury and cardiomyopathy is a serious consequence of this disease. It has been shown that bile duct ligated (BDL) animals could serve as an appropriate experimental model to investigate heart tissue injury in cirrhosis. The accumulation of cytotoxic chemicals (e.g., bile acids) could also adversely affect the heart tissue. Oxidative stress and mitochondrial impairment are the most prominent mechanisms of bile acid cytotoxicity. Taurine (Tau) is the most abundant non-protein amino acid in the human body. The cardioprotective effects of this amino acid have repeatedly been investigated. In the current study, it was examined whether mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of cirrhosis-induced heart injury. Rats underwent BDL surgery. BDL animals received Tau (50, 100, and 500 mg/kg, i.p.) for 42 consecutive days. A significant increase in oxidative stress biomarkers was detected in the heart tissue of BDL animals. Moreover, it was found that heart tissue mitochondrial indices of functionality were deteriorated in the BDL group. Tau treatment significantly decreased oxidative stress and improved mitochondrial function in the heart tissue of cirrhotic animals. These data provide clues for the involvement of mitochondrial impairment and oxidative stress in the pathogenesis of heart injury in BDL rats. On the other hand, Tau supplementation could serve as an effective ancillary treatment against BDL-associated heart injury. Mitochondrial regulating and antioxidative properties of Tau might play a fundamental role in its mechanism of protective effects in the heart tissue of BDL animals.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ghalamfarsa
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Prideaux M, Kitase Y, Kimble M, O'Connell TM, Bonewald LF. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. Bone 2020; 137:115374. [PMID: 32330695 PMCID: PMC7369146 DOI: 10.1016/j.bone.2020.115374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Taurine has been shown to have positive effects on bone mass, which are thought to be due in part to its cytoprotective effects on osteoblasts and here we show that taurine also protects osteocytes against cell death due to reactive oxygen species. Using the IDG-SW3 cell line, the expression of the taurine uptake transporter Taut/Slc6a6 is increased during osteoblast to osteocyte differentiation. Taurine had no effect on genes associated with osteoblast to osteocyte differentiation such as Dmp1, Phex or osteocalcin, even at high doses, but a slight yet significant inhibition of alkaline phosphatase was observed at the highest dose (50 mM). No effect was seen on the osteoclast regulatory genes Rankl and Opg, however the wnt antagonist Sost/sclerostin was potently and dose-dependently downregulated in response to taurine supplementation. Taurine also significantly inhibited Dkk1 mRNA expression, but only at 50 mM. Interestingly, osteocytes were found to also be able to synthesize taurine intracellularly, potentially as a self-protective mechanism, but do not secrete the metabolite. A highly significant increase in the expression of cysteine dioxygenase (Cdo), a key enzyme necessary for the production of taurine, was observed with osteoblast to osteocyte differentiation along with a decrease in methionine, the precursor of taurine. For the first time, we describe the synthesis of taurine by osteocytes, potentially to preserve viability and to regulate bone formation through inhibition of sclerostin.
Collapse
Affiliation(s)
- M Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America.
| | - Y Kitase
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - M Kimble
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - T M O'Connell
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Otolaryngology, Indiana University, Indianapolis, United States of America
| | - L F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America; Department of Orthopedic Surgery, Indiana University, Indianapolis, United States of America
| |
Collapse
|
21
|
Cherix A, Larrieu T, Grosse J, Rodrigues J, McEwen B, Nasca C, Gruetter R, Sandi C. Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. eLife 2020; 9:50631. [PMID: 31922486 PMCID: PMC6970538 DOI: 10.7554/elife.50631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that hierarchical status provides vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Larrieu
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João Rodrigues
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruce McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Li J, Zhang D, Brundel BJJM, Wiersma M. Imbalance of ER and Mitochondria Interactions: Prelude to Cardiac Ageing and Disease? Cells 2019; 8:cells8121617. [PMID: 31842269 PMCID: PMC6952992 DOI: 10.3390/cells8121617] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac disease is still the leading cause of morbidity and mortality worldwide, despite some exciting and innovative improvements in clinical management. In particular, atrial fibrillation (AF) and heart failure show a steep increase in incidence and healthcare costs due to the ageing population. Although research revealed novel insights in pathways driving cardiac disease, the exact underlying mechanisms have not been uncovered so far. Emerging evidence indicates that derailed proteostasis (i.e., the homeostasis of protein expression, function and clearance) is a central component driving cardiac disease. Within proteostasis derailment, key roles for endoplasmic reticulum (ER) and mitochondrial stress have been uncovered. Here, we describe the concept of ER and mitochondrial stress and the role of interactions between the ER and mitochondria, discuss how imbalance in the interactions fuels cardiac ageing and cardiac disease (including AF), and finally assess the potential of drugs directed at conserving the interaction as an innovative therapeutic target to improve cardiac function.
Collapse
Affiliation(s)
- Jin Li
- Correspondence: (J.L.); (M.W.)
| | | | | | | |
Collapse
|
23
|
Taurine Prevented Hypoxia Induced Chicken Cardiomyocyte Apoptosis Through the Inhibition of Mitochondrial Pathway Activated by Calpain-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468422 DOI: 10.1007/978-981-13-8023-5_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Objective To determine whether taurine has protective effects on chicken myocardial apoptosis induced by hypoxic condition through inhibiting calpain-1 derived mitochondrial apoptotic pathway. Methods Chicken primary embryonic myocardial cells were isolated and cultured at 37 °C under a 5% CO2 atmosphere. Firstly the optimum concentration of taurine or PD150606 was chosen by detecting the cell viability. Chicken cardiomyocytes were cultured in 95% N2-5% CO2 atmosphere for 12 h to produce hypoxic conditions. Before hypoxic treatment, 10 mM taurine and 10 uM PD150606 (a specific calpains inhibitor) were added separately or together. The cell apoptosis was detected by acridine orange/ethidium bromide (AO/EB) double staining. Western blotting was used to determine the protein expressions of calpain-1, cytochrome c, Bcl-2, procaspase-9 and procaspase-3 in the cardiomyocytes. Results Taurine administration effectively attenuated the myocardial apoptosis under hypoxic condition, reduced the calpain-1 protein level. In addition, pre-treated taurine could up-regulate the protein expressions of Bcl-2 and procaspase-3 in hypoxic myocardial cells, down-regulate protein expression levels of cytochrome c and procaspase-9. Moreover, taurine exhibited same inhibition effect as PD150606 on the cell apoptosis and proteins express under hypoxic condition. Conclusions Taurine could attenuate the chicken cardiomyocyte apoptosis impaired by hypoxia through inhibiting calpian-1-derived mitochondrial apoptotic pathway in vitro.
Collapse
|
24
|
Wang J, Feng H, Li Z, Zhang X. Napabucasin prevents brain injury in neuronal neonatal rat cells through suppression of apoptosis and inflammation. Microb Pathog 2019; 128:337-341. [PMID: 30659911 DOI: 10.1016/j.micpath.2019.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Abstract
The present study investigates the protective effect of napabucasin on the expression of apoptosis markers and inflammatory factors in the neuronal rat cells with post-isolation damage. The level of ROS determined by the fluorescence measurement in the neuronal rat cells with post-isolation damage was 310.21 RFU compared to 21.45 RFU in sham cell cultures. Napabucasin treatment decreased ROS level in the neuronal rat cells with post-isolation damage in dose based manner. ROS level decreased to 278.67, 203.65, 163.32 and 26.87 RFU, respectively in 1, 2, 3 and 4 μM napabucasin treated cell cultures. Treatment with napabucasin increased GSH level significantly (P < 0.05) in the neuronal rat cells with post-isolation damage. Napabucasin treatment at with 1, 2, 3 and 4 μM concentrations increased SOD activity to 2.4, 3.6, 5.1 and 6.1 U/mg, respectively. Treatment with napabucasin increased the activity of catalase in dose based manner. Napabucasin treatment increased Gpx in injured brain cells of neonatal rats. A significant (P < 0.05) increase in the activity of AChE was observed in neuronal rat cells with post-isolation damage on treatment with napabucasin. Treatment with napabucasin reduced the level of TNF-α and IL-6 significantly (P < 0.05) compared to untreated group. Napabucasin treatment decreased the expression of Bax, caspase-3 and p53 proteins in the neuronal rat cells with post-isolation damage. Napabucasin treatment protects post-isolation damage in the neuronal cells of neonatal rats by suppression of apoptosis and oxidative stress. Therefore, napabucasin can be used for the treatment of brain injury.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pediatrics, Hanzhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Hang Feng
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi 'an, Shaanxi, 710068, China
| | - Zhe Li
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi 'an, Shaanxi, 710068, China
| | - Xiaoge Zhang
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi 'an, Shaanxi, 710061, China.
| |
Collapse
|
25
|
Cui Y, Wu G, Wang Z, Huang F, Ning Z, Chu L, Yang S, Lv Q, Hu J. Effects of Taurine on Broiler Aortic Endothelial Apoptosis Induced by Heat Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:391-406. [DOI: 10.1007/978-981-13-8023-5_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Davargaon RS, Sambe AD, Muthangi V V S. Toxic effect of high glucose on cardiomyocytes, H9c2 cells: Induction of oxidative stress and ameliorative effect of trolox. J Biochem Mol Toxicol 2018; 33:e22272. [PMID: 30512247 DOI: 10.1002/jbt.22272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
Oxidative stress (OS) has been implicated in a variety of pathological conditions, including diabetes mellitus, characterized by hyperglycemia. In the present study, OS induced by hyperglycemia and the effect of trolox, a vitamin E analog, were studied in cardiomyocytes and H9c2 cells exposed to 15 to 33 mM glucose (HG) for 24 to 72 hours in Dulbecco modified Eagle medium. Cells treated wirh 24 or 33 mM glucose for 24 hours or above showed decreased viability and adenosine triphosphate (ATP) content with a concomitant increase in radicals of oxygen species, calcium (Ca2+ ), mitochondrial permeability transition, and oxidative markers, confirming that the cells were under stress. However, upon exposure to 15 mM glucose for 24 hours, H9c2 cells maintained homeostasis and ATP generation. Pretreatment of cells with trolox reduced HG-induced OS to control levels. Here, we report that the toxic effect of HG is highly regulated and that OS induction can be prevented with Trolox, a potential inhibitor of membrane damage.
Collapse
Affiliation(s)
| | - Asha Devi Sambe
- Department of Zoology, Laboratory of Gerontology, J.B. Campus, Bangalore University, Bangalore, India
| | | |
Collapse
|
27
|
Niu X, Zheng S, Liu H, Li S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep 2018; 18:4516-4522. [PMID: 30221665 PMCID: PMC6172387 DOI: 10.3892/mmr.2018.9465] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
The protective effect of taurine against inflammation, apoptosis and oxidative stress in traumatic brain injury was investigated in the present study. Taurine is a non-proteogenic and essential amino acid in animals. It plays a critical nutritional role in brain cell growth, differentiation, and development. Taurine is involved in regeneration and neuroprotection in the injured nervous system, and is an effective antioxidant against lead-, cadmium-, and exercise-induced oxidative stress. Astrocytes and neuron cells were co-cultured and cells were treated with different concentrations of taurine (100, 200 and 300 mg/l) for 72 h, and the levels of reactive oxygen species, malondialdehyde, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase, acetylcholinesterase, tumor necrosis factor-α, interleukin-6, caspase-3, p53, B-cell lymphoma 2 and Bcl-2-associated X protein were determined. These inflammatory, apoptotic, and oxidative stress markers were substantially increased in injured cells, and returned to normal levels following taurine supplementation. Thus, taurine supplementation may be effective against oxidative stress, apoptosis, and inflammation in injured brain cells.
Collapse
Affiliation(s)
- Xiaoli Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Simin Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongtao Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Siyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
28
|
Wang Z, Cui R, Wang K. Effects of sevoflurane pretreatment on the apoptosis of rat H9c2 cardiomyocytes and the expression of GRP78. Exp Ther Med 2018; 15:2818-2823. [PMID: 29599827 PMCID: PMC5867468 DOI: 10.3892/etm.2018.5799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
The protective effect of sevoflurane on apoptosis of rat H9c2 cardiomyocytes induced by H2O2 and the effect on the expression of glucose-regulated protein 78 (GRP78) were investigated. H9c2 cells were routinely cultured and divided into the control, model and sevoflurane groups. Cells in the model group were treated with 400 µM H2O2, and cells in the sevoflurane group were pretreated with sevoflurane prior to treatment with 400 µM H2O2. MTT assay was used to assess cell viability. Annexin V-propidium iodide (AV-PI) double staining flow cytometry was used to detect apoptosis. The intracellular free Ca2+ concentration was measured by the fluorescence-based assay using Fluo-3 AM as a calcium ion fluorescence probe. The mRNA expression level of GRP78 and protein expression levels of GRP78, CHOP and caspase-12 were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The assays showed that after sevoflurane pretreatment the H9c2 cell viability was significantly increased, whereas the H2O2-induced apoptosis, intracellular Ca2+ concentration, mRNA expression of GRP78, and the protein expression of GRP78, CHOP and caspase-12 were all reduced. The results show that pretreatment with sevoflurane inhibited H2O2-induced apoptosis in H9c2 cells. The mechanism may be related to inhibition of the stress-related protein GRP78 expression in endoplasmic reticulum, resulting in decreased intracellular Ca2+ concentration and the downregulation of CHOP and caspase-12 expression levels.
Collapse
Affiliation(s)
- Zhongli Wang
- Department of Anesthesiology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Rongsheng Cui
- Department of Anesthesiology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Kai Wang
- Department of Anesthesiology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
29
|
Tian X, He W, Yang R, Liu Y. Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis. J Biomed Sci 2017; 24:38. [PMID: 28619102 PMCID: PMC5471652 DOI: 10.1186/s12929-017-0345-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Background Myocardial infarction (MI) is an acute and fatal condition that threatens human health. Dl-3-n-butylphthalide (NBP) has been used for the treatment of acute ischemic stroke. Mitochondria may play a protective role in MI injury. However, there are few reports on the cardioprotective effect of NBP or the potential mitochondrial mechanism for the NBP-induced protection against cardiac ischemia injury. We investigated the therapeutic effects of NBP in an in vivo MI model and an in vitro oxidative stress model, as well as the potential mitochondrial mechanism. Methods This study comprised two different experiments. The aim of experiment 1 was to determine the protective effects of NBP on MI and the underlying mechanisms in vivo. In part 1, myocardial infarct size was measured by staining with 2,3,5-triphenyltetrazoliumchloride (TTC). Myocardial enzymes and mitochondrial enzymes were assayed. The aim of experiment 2 was to investigate the role of NBP in H2O2-induced myocardial ischemic injury in H9c2 cells and to determine the potential mechanism. In part 2, H9c2 cell viability was evaluated. ROS levels, mitochondrial morphology, and mitochondrial membrane potential of H9c2 cells were measured. ATP levels were evaluated using an assay kit; mitochondrial DNA (mtDNA), the expressions of NRF-1 and TFAM, and mitochondrial biogenesis factors were determined. Results NBP treatment significantly reduced the infarct ratio, as observed by TTC staining, decreased serum myocardial enzymes in MI, and restored heart mitochondrial enzymes (isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and a-ketoglutarate dehydrogenase (a-KGDH) activities after MI. Moreover, in in vitro studies, NBP significantly increased the viability of H9c2 cells in a dose-dependent manner, reduced cell apoptosis, protected mitochondrial functions, elevated the cellular ATP levels, and promoted H2O2-induced mitochondrial biogenesis in H9c2 cardiomyoblasts. Conclusion Collectively, the results from both the in vivo and in vitro experiments suggested that NBP exerted a cardioprotective effect on cardiac ischemic injury via the regulation of mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Xiaochao Tian
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Rong Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yingping Liu
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
30
|
Zhang Z, Zhao L, Zhou Y, Lu X, Wang Z, Wang J, Li W. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress. Apoptosis 2017; 22:647-661. [DOI: 10.1007/s10495-017-1351-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol 2017; 39:147-154. [PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL-1). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL-1) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lidawani Lambuk
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia.
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Norhafiza Razali
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Anna Krasilnikova
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Maria Kharitonova
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia; Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80 - 82/III, A-6020, Innsbruck, Austria
| | - Vasily Demidov
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Evgeny Serebryansky
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Anatoly Skalny
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia; Peoples' Friendship University of Russia, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexander Spasov
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Ahmad Pauzi Md Yusof
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
32
|
Wang Q, Fan W, Cai Y, Wu Q, Mo L, Huang Z, Huang H. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids 2016; 48:2169-77. [PMID: 27156064 DOI: 10.1007/s00726-016-2244-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state.
Collapse
Affiliation(s)
- Qin Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Lidong Mo
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Zhenwu Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Huiling Huang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurological Institute, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
33
|
Yang YJ, Han YY, Chen K, Zhang Y, Liu X, Li S, Wang KQ, Ge JB, Liu W, Zuo J. TonEBP modulates the protective effect of taurine in ischemia-induced cytotoxicity in cardiomyocytes. Cell Death Dis 2015; 6:e2025. [PMID: 26673669 PMCID: PMC4720904 DOI: 10.1038/cddis.2015.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022]
Abstract
Taurine, which is found at high concentration in the heart, exerts several protective actions on myocardium. Physically, the high level of taurine in heart is maintained by a taurine transporter (TauT), the expression of which is suppressed under ischemic insult. Although taurine supplementation upregulates TauT expression, elevates the intracellular taurine content and ameliorates the ischemic injury of cardiomyocytes (CMs), little is known about the regulatory mechanisms of taurine governing TauT expression under ischemia. In this study, we describe the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway involved in the taurine-regulated TauT expression in ischemic CMs. Taurine inhibited the ubiquitin-dependent proteasomal degradation of TonEBP, promoted the translocation of TonEBP into the nucleus, enhanced TauT promoter activity and finally upregulated TauT expression in CMs. In addition, we observed that TonEBP had an anti-apoptotic and anti-oxidative role in CMs under ischemia. Moreover, the protective effects of taurine on myocardial ischemia were TonEBP dependent. Collectively, our findings suggest that TonEBP is a core molecule in the protective mechanism of taurine in CMs under ischemic insult.
Collapse
Affiliation(s)
- Y J Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Y Y Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - K Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Y Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - X Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - S Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - K Q Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - J B Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - W Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - J Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1424-33. [PMID: 26191650 DOI: 10.1016/j.bbabio.2015.07.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging.
Collapse
Affiliation(s)
- Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| |
Collapse
|
35
|
Taurine Depletion Decreases GRP78 Expression and Downregulates Perk-Dependent Activation of the Unfolded Protein Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:571-9. [PMID: 25833528 DOI: 10.1007/978-3-319-15126-7_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Stacchiotti A, Rovetta F, Ferroni M, Corsetti G, Lavazza A, Sberveglieri G, Aleo MF. Taurine rescues cisplatin-induced muscle atrophy in vitro: a morphological study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:840951. [PMID: 24955211 PMCID: PMC4053152 DOI: 10.1155/2014/840951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 12/28/2022]
Abstract
Cisplatin (CisPt) is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h-8 h) before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Rovetta
- Department of Molecular and Translational Medicine, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Matteo Ferroni
- Department of Information Engineering, CNR-IDASC Sensor Laboratory, Brescia University, Via Valotti 9, 25123 Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy
| | - Giorgio Sberveglieri
- Department of Information Engineering, CNR-IDASC Sensor Laboratory, Brescia University, Via Valotti 9, 25123 Brescia, Italy
| | - Maria Francesca Aleo
- Department of Molecular and Translational Medicine, Brescia University, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
37
|
Sun Q, Hu H, Wang W, Jin H, Feng G, Jia N. Taurine attenuates amyloid β 1–42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells. Biochem Biophys Res Commun 2014; 447:485-9. [DOI: 10.1016/j.bbrc.2014.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 01/01/2023]
|