1
|
Zhang Y, Zhu Y, Jiang G, Chen K, Zhang G, Chen K, Ye T, Zhou Y, Li G. ROS Induced by Aphrocallistes vastus Lectin Enhance Oncolytic Vaccinia Virus Replication and Induce Apoptosis in Hepatocellular Carcinoma Cells. Mar Drugs 2024; 22:307. [PMID: 39057416 PMCID: PMC11278381 DOI: 10.3390/md22070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird's nest glycoprotein and D-galactose. Our previous studies suggested that the oncolytic vaccinia virus (oncoVV) armed with the AVL gene exerted remarkable replication and antitumor effects in vitro and in vivo. In this study, we found that oncoVV-AVL may reprogram the metabolism of hepatocellular carcinoma cells to promote ROS, and elevated ROS subsequently promoted viral replication and induced apoptosis. This study will provide a new theoretical basis for the application of oncoVV-AVL in liver cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Chaulin AM. The Essential Strategies to Mitigate Cardiotoxicity Caused by Doxorubicin. Life (Basel) 2023; 13:2148. [PMID: 38004288 PMCID: PMC10672543 DOI: 10.3390/life13112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 11/26/2023] Open
Abstract
The study of mechanisms underlying cardiotoxicity of doxorubicin and the development of strategies to mitigate doxorubicin-induced cardiotoxicity are the most relevant issues of modern cardio-oncology. This is due to the high prevalence of cancer in the population and the need for frequent use of highly effective chemotherapeutic agents, in particular anthracyclines, for optimal management of cancer patients. However, while being a potent agent to counteract cancer, doxorubicin also affects the cardiovascular systems of patients undergoing chemotherapy in a significant and unfavorable fashion. Consecutively reviewed in this article are risk factors and mechanisms of doxorubicin cardiotoxicity, and the essential strategies to mitigate cardiotoxic effects of doxorubicin treatment in cancer patients are discussed.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia;
- Department of Clinical Chemistry, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
3
|
Chaulin AM, Duplyakov DV. Cardioprotective Strategies for Doxorubicin-induced Cardiotoxicity: Present and Future. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-02-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The improvement of drugs and protocols of chemotherapeutic treatment has led to improved outcomes and survival in patients with cancer. But along with this, at first glance a positive point, there was another interdisciplinary problem, which is the need for early detection and treatment of developing cardiotoxicity when taking chemotherapy drugs. The study of cardioprotective strategies has recently become increasingly relevant, due to the fact that many patients who have successfully undergone treatment for cancer have a high risk of developing or are at high risk of death from cardiovascular diseases. One of the main drugs for the treatment of a number of oncological diseases is an anthracycline – type antibiotic-doxorubicin. This review briefly examines the risk factors and pathophysiological mechanisms underlying anthracycline cardiotoxicity. The current possibilities of cardioprotection of anthracycline cardiotoxicity are considered in detail, and some promising targets and drugs for improving cardioprotective strategies are discussed.
Collapse
Affiliation(s)
- A. M. Chaulin
- Samara State Medical University; Samara Regional Cardiology Dispensary
| | - D. V. Duplyakov
- Samara State Medical University; Samara Regional Cardiology Dispensary
| |
Collapse
|
4
|
Ni X, Yang ZZ, Ye LQ, Han XL, Zhao DD, Ding FY, Ding N, Wu HC, Yu M, Xu GY, Zhao ZA, Lei W, Hu SJ. Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacol Sin 2022; 43:240-250. [PMID: 33686244 PMCID: PMC8724272 DOI: 10.1038/s41401-021-00621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs). For validation of this cell model, alirocumab, a human antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), was selected as an emerging safe lipid-lowering drug; atorvastatin, a common statin (the most effective type of lipid-lowering drug), was used as a drug with reported side effects at high concentrations, while doxorubicin was chosen as a positive cardiotoxic drug. The cytotoxicity of these drugs was assessed using CCK8, ATP, and lactate dehydrogenase release assays at 24, 48, and 72 h. The influences of these drugs on cardiomyocyte electrophysiology were detected using the patch-clamp technique, while their effects on endothelial function were determined by tube formation and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake assays. We showed that alirocumab did not affect the cell viability or cardiomyocyte electrophysiology in agreement with the clinical results. Atorvastatin (5-50 μM) dose-dependently decreased cardiovascular cell viability over time, and at a high concentration (50 μM, ~100 times the normal peak serum concentration in clinic), it affected the action potentials of hPSC-CMs and damaged tube formation and Dil-Ac-LDL uptake of hPSC-ECs. The results demonstrate that the established same-origin hPSC-derived cardiovascular cell model can be used to evaluate lipid-lowering drug safety in cardiovascular cells and allow highly accurate preclinical assessment of potential drugs.
Collapse
Affiliation(s)
- Xuan Ni
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Zhuang-zhuang Yang
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Ling-qun Ye
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Xing-long Han
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Dan-dan Zhao
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Feng-yue Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Nan Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Hong-chun Wu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Miao Yu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Guang-yin Xu
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Zhen-ao Zhao
- grid.412026.30000 0004 1776 2036Institute of Microcirculation, Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000 China
| | - Wei Lei
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Shi-jun Hu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| |
Collapse
|
5
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
6
|
Tursunova NV, Klinnikova MG, Babenko OA, Lushnikova EL. [Molecular mechanisms of the cardiotoxic action of anthracycline antibiotics and statin-induced cytoprotective reactions of cardiomyocytes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 66:357-371. [PMID: 33140729 DOI: 10.18097/pbmc20206605357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The manifestation of the side cardiotoxic effect of anthracycline antibiotics limits their use in the treatment of malignant processes in some patients. The review analyzes the main causes of the susceptibility of cardiomyocytes to the damaging effect of anthracyclines, primarily associated with an increase in the processes of free radical oxidation. Currently, research is widely carried out to find ways to reduce anthracycline cardiotoxicity, in particular, the use of cardioprotective agents in the complex treatment of tumors. Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve the function and metabolism of the cardiovascular system under various pathological impacts, therefore, it is proposed to use them to reduce cardiotoxic complications of chemotherapy. Statins exhibit direct (hypolipidemic) and pleiotropic effects due to the blockade of mevalonic acid synthesis and downward biochemical cascades that determine their cardioprotective properties. The main point of intersection of the pharmacological activity of anthracyclines and statins is the ability of both to regulate the functioning of small GTPase from the Rho family, and their effect in this regard is the opposite. The influence of statins on the modification and membrane dislocation of Rho proteins mediates the indirect antioxidant, anti-inflammatory, endothelioprotective, antiapoptotic effect. The mechanism of statin inhibition of doxorubicin blockade of the DNA-topoisomerase complex, which may be important in preventing cardiotoxic damage during chemotherapy, is discussed. At the same time, it should be noted that the use of statins can be accompanied by adverse side effects: a provocation of increased insulin resistance and glucose tolerance, which often causes them to be canceled in patients with impaired carbohydrate metabolism, so further studies are needed here. The review also analyzes data on the antitumor effect of statins, their ability to sensitize the tumor to treatment with cytostatic drug. It has been shown that the relationship between anthracycline antibiotics and statins is characterized not only by antagonism, but also in some cases by synergism. Despite some adverse effects, statins are one of the most promising cardio- and vasoprotectors for use in anthracycline cardiomyopathy.
Collapse
Affiliation(s)
- N V Tursunova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - O A Babenko
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
7
|
Duzgun Z, Eroglu Z. Role of cardiac drugs and flavonoids on the IRE1-JNK pathway as revealed by re-ranked molecular docking scores, MM/PBSA and umbrella sampling. J Biomol Struct Dyn 2020; 40:3428-3450. [PMID: 33251987 DOI: 10.1080/07391102.2020.1851299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One of the important causes of cardiac dysfunction is the triggering of apoptosis through the IRE1-JNK signaling pathway due to excessive ER stress (endoplasmic reticulum stress). Although there are various studies on beneficial or harmful side effects of cardiac drugs, knowledge about the molecular mechanism of their interactions on this pathway is very limited. In this study, we investigated interactions of statins, ace inhibitors, antiarrhythmic drugs and flavonoids in IRE1, ASK1(apoptosis signal-regulating kinase 1) and JNK1 at an atomic level in comparison with their well-known inhibitors. The rank of scores obtained from four different docking algorithms (Autodock 4, Autodock Vina, iGEMDOCK and GOLD) were combined so that they could be compared with each other and evaluated together. According to combined results, the most potent compound for each compound group was selected for molecular dynamics simulations, MM/PBSA (molecular mechanics/Poisson-Boltzmann surface area) and umbrella sampling calculations. We observed that the statin group drugs had the best affinity by interacting with ASK1 and JNK1 by having a similar effect with their inhibitors, and atorvastatin and pitavastatin came to the fore. Norizalpinine from the flavonoid group had a strong binding interaction with IRE1, and amiodarone from the antiarrhythmic drug group had high binding affinities with IRE1, ASK1 and JNK1. Our study has shown that atorvastatin, pitavastatin, norizalpinine and amiodarone may have a role in preventing cardiac dysfunctions caused by ER stress and may shed light on further in vitro and in vivo research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zekeriya Duzgun
- Faculty of Medicine, Department of Medical Biology, Giresun University, Giresun, Turkey
| | - Zuhal Eroglu
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Klinnikova MG, Koldysheva EV, Tursunova NV, Semenov DE, Lushnikova EL. Features of Myocardial Remodeling and Changes in the Blood Lipid Spectrum in Experimental Doxorubicin-Induced Cardiomyopathy and Atorvastatin Administration. Bull Exp Biol Med 2020; 170:24-29. [PMID: 33222079 DOI: 10.1007/s10517-020-04997-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 11/30/2022]
Abstract
Structural myocardial reorganization and changes in the blood lipid spectrum in rats were studied after administration of a single sublethal dose of doxorubicin (15 mg/kg) alone and in combination with atorvastatin (20 mg/kg/day over 7 days). It was established that doxorubicin induced the development of dyslipidemia in experimental animals (the concentrations of total cholesterol, triglycerides, and VLDL increased by 2.2, 2.0, and 1.96 times, respectively; the atherogenic coefficient increased by 3.4 times by day 7 of the experiment). In animals with experimental anthracycline cardiomyopathy treated with atorvastatin, the concentrations of the main components of the blood lipid spectrum increased less markedly. Atorvastatin alone induces moderate myocardial remodeling in comparison with more pronounced changes in the structural organization of the myocardium in rats treated with doxorubicin alone. Course treatment with atorvastatin under conditions of doxorubicin-induced cardiomyopathy reduced the severity of myocardial remodeling: the decrease in the volume density of cardiomyocytes and the increase in the volume density of the connective tissue were less pronounced in the dynamics of the experiment.
Collapse
Affiliation(s)
- M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| | - E V Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - N V Tursunova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - D E Semenov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
9
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Bayatmakoo R, Rashtchizadeh N, Yaghmaei P, Farhoudi M, Karimi P. Atorvastatin inhibits cholesterol-induced caspase-3 cleavage through down-regulation of p38 and up-regulation of Bcl-2 in the rat carotid artery. Cardiovasc J Afr 2017; 28:298-303. [PMID: 28498386 PMCID: PMC5730680 DOI: 10.5830/cvja-2017-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
AIM Atherosclerotic lesions in the carotid arteries lead to a broad range of cerebrovascular disorders such as vascular dementia and ischaemic stroke. Recent studies have verified the beneficial role of atorvastatin (AV) in atherosclerosis. Despite a large body of studies, the mechanisms underlying this effect have not been completely explained. In this study, several experiments were performed on atherosclerotic rat models to investigate the anti-inflammatory and anti-apoptotic effect of AV in the carotid artery. METHODS In this experimental study, 40 male Wistar rats (250 ± 25 g) were randomly divided into four groups: rats on a normal diet (ND; n = 10); a high-cholesterol diet (HD; n = 10); a high-cholesterol diet plus AV (HD + AV; n = 10) ; and the AV control group (AV; n = 10). Cleavage of caspase-3 protein, expression of B-cell lymphoma 2 (Bcl-2) as well as phosphorylation of p38 mitogen-activated protein kinase (MAPK) were determined by immunoblotting assay in the carotid artery homogenate. Plasma atherogenic indices, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured by colorimetric assay at the end of the experiment. Plasma levels of oxidised LDL (oxLDL) were measured by sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS After eight weeks of feeding with a high-cholesterol diet, an elevated level of oxLDL was observed in the plasma in the HD group compared with the ND group [214.42 ± 17.46 vs 69.13 ± 9.92 mg/dl (5.55 ± 0.45 vs 1.78 ± 0.26 mmol/l); p < 0.01]. AV administration significantly reduced oxLDL levels in the HD + AV compared to the HD group [126.52 ± 9.46 vs 214.42 ± 17.46 mg/dl (3.28 ± 0.25 vs 5.55 ± 0.45 mmol/l); p < 0.01]. Results also showed that compared with the HC group, the HC + AV group had lower levels of p38 phosphorylation (p < 0.05) and higher levels of Bcl-2 expression (p < 0.05). Lower levels of cleaved caspase-3 were observed in the HC + AV group in comparison with the HC group (p < 0.05). CONCLUSIONS The resultant data suggest that the anti-apoptotic effect of AV could be partially mediated by the pro-inflammatory protein p38 MAPK and the anti-apoptotic protein Bcl-2 in the rat carotid artery. Atorvastatin can therefore be considered a target drug in the prevention or development of atherosclerotic events.
Collapse
Affiliation(s)
- Roshanak Bayatmakoo
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Cheng WP, Lo HM, Wang BW, Chua SK, Lu MJ, Shyu KG. Atorvastatin alleviates cardiomyocyte apoptosis by suppressing TRB3 induced by acute myocardial infarction and hypoxia. J Formos Med Assoc 2016; 116:388-397. [PMID: 27645622 DOI: 10.1016/j.jfma.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/PURPOSE TRB3 (tribbles 3), an apoptosis-regulated gene, increases during endoplasmic reticulum stress. Hypoxia can induce inflammatory mediators and apoptosis in cardiomyocytes. However, the expression of TRB3 in cardiomyocyte apoptosis under hypoxia is not thoroughly known. We investigated the regulation mechanism of TRB3 expression and apoptosis induced by hypoxia in cardiomyocytes. METHODS An in vivo model of acute myocardial infarction (AMI) was applied in adult Wistar rats to induce myocardial hypoxia. Rat neonatal cardiomyocytes were subjected to 2.5% O2 to induce hypoxia. RESULTS The expression of TRB3 was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia. Hypoxia significantly enhanced TRB3 protein and mRNA expression. Adding c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA), tumor necrosis factor-α (TNF-α) antibody, and atorvastatin 30 minutes before hypoxia reversed the induction of TRB3 protein. A gel-shift assay showed the DNA-binding activity of growth arrest and DNA damage-inducible gene 153 (GADD153), which increased after hypoxia. Hypoxia increased, whereas the TRB3-mut plasmid, SP600125, and TNF-α antibody abolished the hypoxia-induced TRB3 promoter activity. Hypoxia increased the secretion of TNF-α from cardiomyocytes. Exogenous administration of TNF-α recombinant protein to the cardiomyocytes without hypoxia increased TRB3 protein expression, similar to that observed after hypoxia. Hypoxia-induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA, the TNF-α antibody, and atorvastatin. Atorvastatin reduced the TRB3 expression and cardiomyocyte apoptosis induced by AMI. Hypoxia induces TRB3 through TNF-α, JNK, and the GADD153 pathway. CONCLUSION Treatment of atorvastatin inhibits the expression of TRB3 and cardiomyocyte apoptosis induced by AMI and hypoxia.
Collapse
Affiliation(s)
- Wen-Pin Cheng
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huey-Ming Lo
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Bao-Wei Wang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Su-Kiat Chua
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Lu
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
He F, Xu X, Yuan S, Tan L, Gao L, Ma S, Zhang S, Ma Z, Jiang W, Liu F, Chen B, Zhang B, Pang J, Huang X, Weng J. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation. Sci Rep 2016; 6:30368. [PMID: 27488468 PMCID: PMC4973266 DOI: 10.1038/srep30368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.
Collapse
Affiliation(s)
- Fengping He
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Xin Xu
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Shuguo Yuan
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Liangqiu Tan
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Lingjun Gao
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Shaochun Ma
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Shebin Zhang
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Zhanzhong Ma
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Wei Jiang
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Fenglian Liu
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Baofeng Chen
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Beibei Zhang
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Jungang Pang
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Xiuyan Huang
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Jiaqiang Weng
- Department Institute of Cardiovascular Diseases, The Yuebei People’s Hospital, Medical College, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
13
|
Mahon RN, Hafner R. Immune Cell Regulatory Pathways Unexplored as Host-Directed Therapeutic Targets for Mycobacterium tuberculosis: An Opportunity to Apply Precision Medicine Innovations to Infectious Diseases. Clin Infect Dis 2016; 61Suppl 3:S200-16. [PMID: 26409283 DOI: 10.1093/cid/civ621] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lack of novel antimicrobial drugs in development for tuberculosis treatment has provided an impetus for the discovery of adjunctive host-directed therapies (HDTs). Several promising HDT candidates are being evaluated, but major advancement of tuberculosis HDTs will require understanding of the master or "core" cell signaling pathways that control intersecting immunologic and metabolic regulatory mechanisms, collectively described as "immunometabolism." Core regulatory pathways conserved in all eukaryotic cells include poly (ADP-ribose) polymerases (PARPs), sirtuins, AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling. Critical interactions of these signaling pathways with each other and their roles as master regulators of immunometabolic functions will be addressed, as well as how Mycobacterium tuberculosis is already known to influence various other cell signaling pathways interacting with them. Knowledge of these essential mechanisms of cell function regulation has led to breakthrough targeted treatment advances for many diseases, most prominently in oncology. Leveraging these exciting advances in precision medicine for the development of innovative next-generation HDTs may lead to entirely new paradigms for treatment and prevention of tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Robert N Mahon
- Division of AIDS-Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|