1
|
Tian LY, Smit DJ, Popova NV, Horn S, Velasquez LN, Huber S, Jücker M. All Three AKT Isoforms Can Upregulate Oxygen Metabolism and Lactate Production in Human Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2024; 25:2168. [PMID: 38396845 PMCID: PMC10889766 DOI: 10.3390/ijms25042168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Ling-Yu Tian
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| | - Nadezhda V. Popova
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Lis Noelia Velasquez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.N.V.); (S.H.)
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.N.V.); (S.H.)
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| |
Collapse
|
2
|
Yang F, Chen L, Wen B, Wang X, Wang L, Ji K, Liu H. Golgi Reassembly Stacking Protein 2 Modulates Myometrial Contractility during Labor by Affecting ATP Production. Int J Mol Sci 2023; 24:10116. [PMID: 37373263 DOI: 10.3390/ijms241210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The mechanism of maintaining myometrial contractions during labor remains unclear. Autophagy has been reported to be activated in laboring myometrium, along with the high expression of Golgi reassembly stacking protein 2 (GORASP2), a protein capable of regulating autophagy activation. This study aimed to investigate the role and mechanism of GORASP2 in uterine contractions during labor. Western blot confirmed the increased expression of GORASP2 in laboring myometrium. Furthermore, the knockdown of GORASP2 in primary human myometrial smooth muscle cells (hMSMCs) using siRNA resulted in reduced cell contractility. This phenomenon was independent of the contraction-associated protein and autophagy. Differential mRNAs were analyzed using RNA sequencing. Subsequently, KEGG pathway analysis identified that GORASP2 knockdown suppressed several energy metabolism pathways. Furthermore, reduced ATP levels and aerobic respiration impairment were observed in measuring the oxygen consumption rate (OCR). These findings suggest that GORASP2 is up-regulated in the myometrium during labor and modulates myometrial contractility mainly by maintaining ATP production.
Collapse
Affiliation(s)
- Fan Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lina Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huishu Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
3
|
Wang Z, Li J, Zhang P, Zhao L, Huang B, Xu Y, Wu G, Xia Q. The Role of ERBB Signaling Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma and Establishing a Prognostic Risk Assessment Model for Patients. Front Genet 2022; 13:862210. [PMID: 35903358 PMCID: PMC9314565 DOI: 10.3389/fgene.2022.862210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed to investigate the potential role of ERBB signaling pathway-related genes in kidney renal clear cell carcinoma (KIRC) and establish a new predictive risk model using various bioinformatics methods. Methods: We downloaded the KIRC dataset and clinicopathological information from The Cancer Genome Atlas database. Univariate Cox analysis was used to identify essential genes significantly associated with KIRC progression. Next, we used the STRING website to construct a protein-protein interaction network of ERBB signaling pathway-related molecules. We then used the least the absolute shrinkage and selection operator (LASSO) regression analysis to build a predictive risk model for KIRC patients. Next, we used multiple bioinformatics methods to analyze the copy number variation, single-nucleotide variation, and overall survival of these risk model genes in pan-cancer. At last, we used the Genomics of Drug Sensitivity in Cancer to investigate the correlation between the mRNA expression of genes associated with this risk model gene and drug sensitivity. Results: Through the LASSO regression analysis, we constructed a novel KIRC prognosis-related risk model using 12 genes: SHC1, GAB1, SOS2, SRC, AKT3, EREG, EIF4EBP1, ERBB3, MAPK3, transforming growth factor-alpha, CDKN1A, and PIK3CD. Based on this risk model, the overall survival rate of KIRC patients in the low-risk group was significantly higher than that in the high-risk group (p = 1.221 × 10-15). Furthermore, this risk model was associated with cancer metastasis, tumor size, node, stage, grade, sex, and fustat in KIRC patients. The receiver operating characteristic curve results showed that the model had better prediction accuracy. Multivariate Cox regression analysis showed that the model's risk score was an independent risk factor for KIRC. The Human Protein Atlas database was used to validate the protein expression of risk model-associated molecules in tumors and adjacent normal tissues. The validation results were consistent with our previous findings. Conclusions: We successfully established a prognostic-related risk model for KIRC, which will provide clinicians with a helpful reference for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, South Korea
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Urology, Dongying People’s Hospital, Dongying, China
| | - Bingyin Huang
- Department of Pathology, The First People’s Hospital of Zhoukou, Zhoukou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Li D, Zhao K, Zhao Z, Jiang B, Gong X, Zhang Y, Guo Y, Xiao H, Wang Y, Liu H, Yi C, Gu W. High Expression MicroRNA-206 Inhibits the Growth of Tumor Cells in Human Malignant Fibrous Histiocytoma. Front Cell Dev Biol 2021; 9:751833. [PMID: 34900997 PMCID: PMC8656228 DOI: 10.3389/fcell.2021.751833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Malignant fibrous histiocytoma (MFH) is a common type of soft tissue sarcoma and a serious threat to human health. MFH often relapses locally after the curettage is related to the residual cancer stem cells (CSCs). Currently, the dysregulation of microRNA (miRNA) has been found to be closely related to the recurrence of CSCs. However, whether dysregulations of miRNAs exist in MFH, CSCs remained unknown. Methods: In this study, miRNAs in MFH CSCs and MFH common cells were examined by gene probe. Then, target genes and their functions involved in the signal pathway were predicted by the relevant database. Finally, the miRNAs’ target regulatory network was constructed. Furthermore, the miRNAs and target genes were identified by quantitative polymerase chain reaction, whereas miRNA analogs and antagonists were transfected in tumor cells to investigate cell proliferation ability further. Results: Results showed that a total of 47 miRNAs were found, including 16 that were upregulated and 31 that were downregulated. The screened differential miRNA showed a different expression in the cell resistant strains compared with the control group. Quantitative polymerase chain reaction analysis confirmed that the relative abundance of seven miRNAs and four target genes varied significantly. The encouraging issue is that we found Hsa-miR-206 significantly inhibited MFH proliferative activity. Conclusion: Hsa-miR-206 played a key role in regulating MFH CSC properties that might be a representative marker and target for the diagnosis and treatment of MFH in the future.
Collapse
Affiliation(s)
- Dejian Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Kai Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziwen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianxu Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqi Guo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wenguang Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Fang X, Huang W, Wu P, Zeng J, Li X. CircRNA circTRAF3 promotes nasopharyngeal carcinoma metastasis through targeting miR-203a-3p/AKT3 axis. Pathol Res Pract 2021; 221:153438. [PMID: 33887546 DOI: 10.1016/j.prp.2021.153438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022]
Abstract
Distant metastasis is still the main cause of death in patients with nasopharyngeal carcinoma (NPC), and its mechanism is not fully understood. In this study, we studied the biological function and molecular mechanism of circular RNA circTRAF3 in NPC metastasis. We found that the increase in circTRAF3 is associated with the metastasis and survival of NPC patients. Knockdown of circTRAF3 could inhibit NPC cell proliferation and cell invasion, and induce apoptosis in vitro and in vivo. Further mechanism studies demonstrated that circTRAF3 eliminated the inhibitory effect of miR-203a-3p on AKT3 by adsorbing miR-203a-3p, and finally played the role of oncogene in NPC. Our findings reveal a new type of circRNA, circTRAF3, which acts as an oncogene in NPC and targets miR-203a-3p/AKT3 pathway. The circTRAF3/miR-203a-3p/AKT3 pathway may be a potential therapeutic target for metastatic NPC.
Collapse
Affiliation(s)
- Xing Fang
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ping Wu
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Junfeng Zeng
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xin Li
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
6
|
Galbraith LCA, Mui E, Nixon C, Hedley A, Strachan D, MacKay G, Sumpton D, Sansom OJ, Leung HY, Ahmad I. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene 2021; 40:2355-2366. [PMID: 33654198 PMCID: PMC8016665 DOI: 10.1038/s41388-021-01707-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.
Collapse
Affiliation(s)
- Laura C A Galbraith
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - David Strachan
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Gillian MacKay
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Imran Ahmad
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| |
Collapse
|
7
|
Khandelwal A, Sharma U, Barwal TS, Seam RK, Gupta M, Rana MK, Vasquez KM, Jain A. Circulating miR-320a Acts as a Tumor Suppressor and Prognostic Factor in Non-small Cell Lung Cancer. Front Oncol 2021; 11:645475. [PMID: 33833996 PMCID: PMC8021852 DOI: 10.3389/fonc.2021.645475] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulated expression profiles of microRNAs (miRNAs) have been observed in several types of cancer, including non-small cell lung cancer (NSCLC); however, the diagnostic and prognostic potential of circulating miRNAs in NSCLC remains largely undefined. Here we found that circulating miR-320a was significantly down-regulated (~5.87-fold; p < 0.0001) in NSCLC patients (n = 80) compared to matched control plasma samples from healthy subjects (n = 80). Kaplan-Meier survival analysis revealed that NSCLC patients with lower levels of circulating miR-320a had overall poorer prognosis and survival rates compared to patients with higher levels (p < 0.0001). Moreover, the diagnostic and prognostic potential of miR-320a correlated with clinicopathological characteristics such as tumor size, tumor node metastasis (TNM) stage, and lymph node metastasis. Functionally, depletion of miR-320a in human A549 lung adenocarcinoma cells induced their metastatic potential and reduced apoptosis, which was reversed by exogenous re-expression of miR-320a mimics, indicating that miR-320a has a tumor-suppressive role in NSCLC. These results were further supported by high levels of epithelial-mesenchymal transition (EMT) marker proteins (e.g., Beta-catenin, MMP9, and E-cadherin) in lung cancer cells and tissues via immunoblot and immunohistochemistry experiments. Moreover, through bioinformatics and dual-luciferase reporter assays, we demonstrated that AKT3 was a direct target of miR-320a. In addition, AKT3-associated PI3K/AKT/mTOR protein-signaling pathways were elevated with down-regulated miR-320a levels in NSCLC. These composite data indicate that circulating miR-320a may function as a tumor-suppressor miRNA with potential as a prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Akanksha Khandelwal
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, India
| | | | - Rajeev Kumar Seam
- Department of Radiation Oncology, Indira Gandhi Medical College, Shimla, India
| | - Manish Gupta
- Department of Radiation Oncology, Indira Gandhi Medical College, Shimla, India
| | - Manjit Kaur Rana
- Lab Medicine, Department of Pathology, All India Institute of Medical Sciences, Bathinda, India
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| |
Collapse
|
8
|
Goldmann T, Schmitt B, Müller J, Kröger M, Scheufele S, Marwitz S, Nitschkowski D, Schneider MA, Meister M, Muley T, Thomas M, Kugler C, Rabe KF, Siebert R, Reck M, Ammerpohl O. DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer. Clin Epigenetics 2021; 13:38. [PMID: 33596996 PMCID: PMC7890863 DOI: 10.1186/s13148-021-01024-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20–25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens. Results We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy. Conclusions Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01024-6.
Collapse
Affiliation(s)
- Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Julia Müller
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany
| | - Maren Kröger
- Institute of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Germany
| | - Swetlana Scheufele
- Institute of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Sebastian Marwitz
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Dörte Nitschkowski
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Internistische Onkologie der Thoraxtumoren, Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Klaus F Rabe
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Medical Center Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martin Reck
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Medical Center Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.
| |
Collapse
|
9
|
Corum DG, Jenkins DP, Heslop JA, Tallent LM, Beeson GC, Barth JL, Schnellmann RG, Muise-Helmericks RC. PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression. J Biol Chem 2020; 295:18091-18104. [PMID: 33087445 PMCID: PMC7939459 DOI: 10.1074/jbc.ra120.013716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/15/2020] [Indexed: 12/01/2022] Open
Abstract
Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.
Collapse
Affiliation(s)
- Daniel G Corum
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lacey M Tallent
- Department of Bioengineering, Duke University, Durham, North Carolina
| | - Gyda C Beeson
- Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
10
|
Potentials of miR-15/16 targeting cancer stem cell pathways: Novel implication in cancer chemotherapy. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Bhagat S, Singh S. Co-delivery of AKT3 siRNA and PTEN Plasmid by Antioxidant Nanoliposomes for Enhanced Antiproliferation of Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:3999-4011. [PMID: 35025475 DOI: 10.1021/acsabm.9b01016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Globally, prostate cancer is the fifth major cancer type and the second leading cause of cancer-related death in men. In 2018, about 1.3 million prostate cancer cases were reported worldwide. It is reported that loss of PTEN (tumor suppressor gene) expression leads to hyperactivation of the PI3K/AKT pathway and thus induces uncontrolled cell proliferation. Loss or mutation in regular PTEN expression is reported to occur in ∼30% of primary prostate cancer cases and ∼65% of metastatic cancer cases. Restoring the PTEN expression could inhibit the PI3K/AKT/mTOR signaling pathway, thus avoid the growth of prostate cancer cells. In this work, we have synthesized a multifunctional nanoliposomal formulation incorporating PTEN plasmid, AKT3 siRNA, and antioxidant cerium oxide nanoparticles (CeNPs). The nanoliposomes were able to successfully internalize in prostate cancer (PC-3) cells, restore the expression of PTEN protein, and knock down AKT3 mRNA. Further, the multifunctional nanoliposomes induce DNA damage and apoptosis in prostate cancer cells. The investigation of the PI3K/AKT/mTOR signaling pathway revealed that PTEN protein and apoptosis-specific proteins are overexpressed, leading to the inhibition of oncoproteins and, thus, prostate cancer.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
12
|
Wang Y, Liu L, Chen Z. Transcriptome profiling of cervical cancer cells acquired resistance to cisplatin by deep sequencing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2820-2829. [PMID: 31293179 DOI: 10.1080/21691401.2019.1637882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cervical cancer is one of the most fatal malignancies in females. Acquired resistance to chemotherapeutic agent is one reason behind this lethality. In this study, we developed cisplatin resistance cell line, subsequently examined the molecular mechanisms linked. Transcriptome sequencing technology was utilized to compare the various expression models between the cisplatin-resistant cell line (Hela/DDP) and its parental cell line human cervical adenocarcinoma Hela. The present study has identified 2,312 differentially expressed genes (DEGs). Results showed there were 1,437 up-regulated genes and 875 down-regulated ones. Databases analysis including Gene ontology (GO), Cluster of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal potential molecular mechanisms. We studied AKT3, a crucial gene in the PI3K/AKT pathway which clustered the most DEGs. Silencing AKT3 in Hela/DDP could enhance its sensibility to cisplatin. Quantitative real-time reverse transcription PCR (qRT-PCR) and western blot experiments were showed that expression of AKT3 was decreased after siRNA interference and inhibitor treatment. CCK-8 experiments showed that low expression of Akt3/pAkt enhanced the sensitivity of drug-resistant cells to cisplatin. Apoptotic analysis demonstrated that inhibition of AKT3 increased the rate of Hela/DDP apoptosis. Our results suggest a novel mechanism by which upregulated expression of AKT3 in cervical cancer may lead to resistance to cisplatin.
Collapse
Affiliation(s)
- Yamin Wang
- a National Institute Education, Nanyang Technological University , Singapore , Singapore
| | - Linna Liu
- b Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University , Xi'an , P.R. China
| | - Zhong Chen
- a National Institute Education, Nanyang Technological University , Singapore , Singapore
| |
Collapse
|
13
|
Li Y, Li L. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. J Ovarian Res 2019; 12:106. [PMID: 31703725 PMCID: PMC6839211 DOI: 10.1186/s13048-019-0580-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. METHODS We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. RESULTS A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. CONCLUSIONS Our study suggests that miR-182 is essential for the biological progression of OC.
Collapse
Affiliation(s)
- Yaowei Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
- Department of Gynecology and obstetrics, Shangyu People's Hospital, Shangyu, Zhejiang, China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Wang X, Li GH. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J Cell Physiol 2018; 233:9447-9457. [PMID: 30136280 PMCID: PMC6221029 DOI: 10.1002/jcp.26833] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
Abstract
Aberrant expressions of microRNAs have been reported to be strongly associated with the progression and prognosis of various tumors, including oral squamous cell carcinoma (OSCC). Recent studies on miRNA expression profiling have suggested that microRNA-16 (miR-16) may be dysregulated in OSCC. However, the tumorigenic roles and mechanisms of miR-16 in OSCC are still largely unknown. In this study, we demonstrated that miR-16 was specifically downregulated in both OSCC patients and cancer cell lines. In addition, functional roles of miR-16 in vitro suggested that the miR-16 mimic inhibited cell proliferation and induced apoptosis, whereas miR-16 inhibitor displayed the opposite effects. Luciferase reporter assay and correlation analysis showed that AKT3 and BCL2L2 were directly targeted by miR-16 and were inversely expressed with miR-16 in OSCC. Moreover, restoration of AKT3 and BCL2L2 expression could partially reverse the cell proliferation inhibition and apoptosis induction caused by miR-16. In xenograft nude mice, miR-16 mimics decreased the expression of AKT3 and BCL2L2 and reduced the tumors volumes and weights, whereas the miR-16 inhibitor exhibited adverse effects in the derived xenografts. In conclusion, the findings suggested that miR-16 functions as a tumor suppressor miRNA to inhibit cell proliferation and induce apoptosis in OSCC through decreasing the oncogenes AKT3 and BCL2L2 and that miR-16 could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Hui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Huang Y, Wu Y, Zeng L, Shan W, Huang L. The tumor suppressor role of microRNA-338-3p in renal cell carcinoma. Oncol Lett 2018; 16:2195-2200. [PMID: 30008918 PMCID: PMC6036501 DOI: 10.3892/ol.2018.8914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Human renal cell carcinoma (RCC) is the most common type of kidney malignancy in adults accounting for 2-3% of all adult malignancies. In China, RCC accounts for ~0.5% of all cancer-associated mortalities, ranking 16th among all cancer types. For early-stage RCC, surgery is the recommended treatment. Molecularly targeted therapy is the preferred first-line treatment for clear-cell RCC. However, more potential targets are required. MicroRNA-338-3p (miR-338-3p) functions as a tumor suppressor in various cancers, but has not been studied in RCC. Accordingly, the present study investigated the role of miR-338-3p of RCC. It was demonstrated that miR-338-3p was present at low levels in RCC tissues. Also, overexpression of miR-338-3p inhibited cell proliferation and promoted cell apoptosis, and downregulation of miR-338-3p promoted cell proliferation. The 3' untranslated region of AKT serine/threonine kinase 3 was targeted by miR-338-3p. In conclusion, the data of the present study revealed the inhibitory function of miR-338-3p in RCC and suggested that miR-338-3p is novel therapeutic target for RCC, but further investigation is needed.
Collapse
Affiliation(s)
- Yidong Huang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wu
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Zeng
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Shan
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Liu Q, Qu X, Xie X, He P, Huang S. Repression of Akt3 gene transcription by the tumor suppressor RIZ1. Sci Rep 2018; 8:1528. [PMID: 29367689 PMCID: PMC5784169 DOI: 10.1038/s41598-018-19943-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/10/2018] [Indexed: 12/04/2022] Open
Abstract
RIZ1 has been studied as a tumor suppressor and may play a role in metabolic diseases related to the Western style diet, such as cancer and obesity. The Akt pathway is known to play a role in both cancer and obesity, and a link between Akt and RIZ1 has also been found. To better understand the role of RIZ1 in obesity and cancer, we investigated how RIZ1 regulates the expression of Akt3. We found that overexpression of RIZ1 in HEK293 cells reduced the expression of Akt3 protein. Luciferase reporter activity of Akt3 gene promoter was significantly reduced in cells co-transfected with RIZ1. Recombinant proteins of RIZ1 was able to bind the Akt3 promoter in vitro, and chromatin immunoprecipitation assay also demonstrated the ability of RIZ1 binding to the Akt3 promoter in vivo. Overexpression of RIZ1 increased H3K9 methylation on the Akt3 promoter. These results identify Akt3 as a target of RIZ1 regulation and expand our understanding of the Akt pathway in cancer and obesity.
Collapse
Affiliation(s)
- Qingnan Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Pathology, YiYang Medical College, Yiyang, Hunan, China
| | - Xiaotian Qu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolei Xie
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pei He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shi Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Lin Y, Cheng K, Wang T, Xie Q, Chen M, Chen Q, Wen Q. miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother 2017; 95:1718-1724. [PMID: 28962076 DOI: 10.1016/j.biopha.2017.09.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The aims of this study were to test the influence of miR-217 on the proliferation, invasion, migration of thyroid cancer and the relevant mechanism. METHOD miR-217 expression levels in thyroid cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR).Cell Counting Kit-8, flow cytometer, wound healing, transwell invasion assays were applied to evaluate the effect of miR-217 on proliferation, apoptosis, migration and invasion of thyroid cells. The luciferase reporter assay, qRT-PCR, and western blot were used to identify target of miR-217. Relative relationship of expression level between miR-217 and AKT3 was analyzed in thyroid cancer tissues. Xenograft transplantation was performed to test effect of miR-217 in vivo. RESULTS We found that the expression of miR-217 was significantly decreased in thyroid cancer tissues cell lines. Significantly, decreased miR-217 expression were associated with the clinical stage and lymph node metastasis. Function studies revealed that miR-217 overexpression in thyroid cancer cells inhibited proliferation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Subsequently, AKT3 was identified as a target of miR-217 in thyroid cancer. AKT3 expression was upregulated in thyroid cancer tissues, was inversely correlated with miR-217expression. Besides, overexpression of AKT3 efficiently abrogates suppressive effect on proliferation, migration and invasion in thyroid cancer cells caused by overexpression of miR-217. CONCLUSION These data demonstrated a tumor suppressor role for miR-217 in thyroid cancer development and progression by targeting AKT3, suggesting miR-217 might be a potential target for thyroid cancer.
Collapse
Affiliation(s)
- Yuanqiang Lin
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Kailiang Cheng
- Department of Radiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Tongtong Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Qian Xie
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Minglong Chen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Qianqian Chen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China.
| | - Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China.
| |
Collapse
|