1
|
Yin H, Shi J, Li S, You Q, Zhu H, Koo C, Liu B, Hou L, Wu C. Emerging roles of exosomal circRNAs in non-small cell lung cancer. J Transl Med 2025; 23:490. [PMID: 40307927 PMCID: PMC12042431 DOI: 10.1186/s12967-025-06463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Despite the prevalence of non-small cell lung cancer (NSCLC) is high, the limited early detection and management of these tumors are restricted since there is an absence of reliable and precise diagnostic biomarkers and therapeutic targets. Exosomes transport functional molecules for facilitating intercellular communication, especially in the tumor microenvironment, indicating their potential as cancer biomarkers and therapeutic targets. Circular RNA (circRNA), a type of non-coding RNA possessing a covalently closed loop structure, substantial abundance, and tissue-specific expression patterns, is stably enriched in exosomes. In recent years, significant breakthroughs have been made in research on exosomal circRNA in NSCLC. This review briefly introduces the biogenesis, characterizations, and functions of circRNAs and exosomes, and systematically describes the biological functions and mechanisms of exosomal circRNAs in NSCLC. In addition, this study summarizes their role in the progression of NSCLC and discusses their clinical significance as biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongyuan Yin
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Shi
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qianhui You
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huici Zhu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chinying Koo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
3
|
da Silva EL, Mesquita FP, Pinto LC, Gomes BPS, de Oliveira EHC, Burbano RMR, Moraes MEAD, de Souza PFN, Montenegro RC. Transcriptome analysis displays new molecular insights into the mechanisms of action of Mebendazole in gastric cancer cells. Comput Biol Med 2025; 184:109415. [PMID: 39566281 DOI: 10.1016/j.compbiomed.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Gastric cancer (GC) is a common cancer worldwide. Therefore, searching for effective treatments is essential, and drug repositioning can be a promising strategy to find new potential drugs for GC therapy. For the first time, we sought to identify molecular alterations and validate new mechanisms related to Mebendazole (MBZ) treatment in GC cells through transcriptome analysis using microarray technology. Data revealed 1066 differentially expressed genes (DEGs), of which 345 (2.41 %) genes were upregulated, 721 (5.04 %) genes were downregulated, and 13,231 (92.54 %) genes remained unaltered after MBZ exposure. The overexpressed genes identified were CCL2, IL1A, and CDKN1A. In contrast, the H3C7, H3C11, and H1-5 were the top 3 underexpressed genes. Gene set enrichment analysis (GSEA) identified 8 pathways significantly overexpressed in the treated group (p < 0.05 and FDR<0.25). The validation of the expression of top desregulated genes by RT-qPCR confirmed the transcriptome results, where MBZ increased the CCL2, IL1A, and CDKN1A and reduced the H3C7, H3C11, and H1-5 transcript levels. Expression analysis in samples from TCGA databases correlated that the lower ILI1A and higher H3C11 and H1-5 gene expression are associated with decreased overall survival rates in patients with GC, indicating that MBZ treatment can improve the prognosis of patients. Thus, the data demonstrated that the drug MBZ alters the transcriptome of the AGP-01 lineage, mainly modulating the expression of histone proteins and inflammatory cytokines, indicating a possible epigenetic and immunological effect on tumor cells, these findings highlight new mechanisms of action related to MBZ treatment. Additional studies are still needed to better clarify the epigenetic and immune mechanism of MBZ in the therapy of GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus Street, Belém, Brazil
| | - Bruna Puty Silva Gomes
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Rommel Mario Rodríguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Av. Governador Magalhães Barata, Belém, Brazil; Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Augusto Correa Avenue, Belém, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Brazil; National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Red Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil.
| |
Collapse
|
4
|
Nazari H, Cho AN, Goss D, Thiery JP, Ebrahimi Warkiani M. Impact of brain organoid-derived sEVs on metastatic adaptation and invasion of breast carcinoma cells through a microphysiological system. LAB ON A CHIP 2024; 24:3434-3455. [PMID: 38888211 DOI: 10.1039/d4lc00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Brain metastases are common in triple-negative breast cancer (TNBC), suggesting a complex process of cancer spread. The mechanisms enabling TNBC cell adaptation and proliferation in the brain remain unclear. Small extracellular vesicles (sEVs) play a crucial role in communication between breast carcinoma cells and the brain. However, the lack of relevant models hinders understanding of sEV-mediated communication. The present study assesses the impact of brain organoid-derived sEVs (BO-sEVs) on various behaviours of the MDA-MB-231 cell line, chosen as a representative of TNBC in a 3D microfluidic model. Our results demonstrate that 150-200 nm sEVs expressing CD63, CD9, and CD81 from brain organoid media decrease MDA-MB-231 cell proliferation, enhance their wound-healing capacity, alter their morphology into more mesenchymal mode, and increase their stemness. BO-sEVs led to heightened PD-L1, CD49f, and vimentin levels of expression in MDA-MB-231 cells, suggesting an amplified immunosuppressive, stem-like, and mesenchymal phenotype. Furthermore, these sEVs also induced the expression of neural markers such as GFAP in carcinoma cells. The cytokine antibody profiling array also showed that BO-sEVs enhanced the secretion of MCP-1, IL-6, and IL-8 by MDA-MB-231 cells. Moreover, sEVs significantly enhance the migration and invasion of carcinoma cells toward brain organoids in a 3D organoid-on-a-chip system. Our findings emphasize the potential significance of metastatic site-derived sEVs as pivotal mediators in carcinoma progression and adaptation to the brain microenvironment, thereby unveiling novel therapeutic avenues.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Dale Goss
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| | - Jean Paul Thiery
- UMR 7057 CNRS Matter and Complex Systems, Université Paris Cité, Paris, France
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
6
|
Gu Y, Xu Y, Wang P, Zhao Y, Wan C. Research progress on molecular mechanism of pyroptosis caused by Helicobacter pylori in gastric cancer. Ann Med Surg (Lond) 2024; 86:2016-2022. [PMID: 38576917 PMCID: PMC10990316 DOI: 10.1097/ms9.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy worldwide. Helicobacter pylori (H. pylori), a Gram-negative spiral bacterium, has the ability to colonize and persist in the human gastric mucosa. Persistent H. pylori infection has been identified as a major risk factor for ~80% of GC cases. The interplay between H. pylori pathogenicity, genetic background, and environmental factors collectively contribute to GC transformation. Eradicating H. pylori infection is beneficial in reducing the recurrence of gastric cancer and residual cancer. However, the underlying molecular mechanisms involved in GC remain incompletely understood. Additionally, H. pylori reshapes the immune microenvironment within the stomach which may compromise immunotherapy efficacy in infected individuals. Clinical eradication of H. pylori infection still faces numerous challenges. In this review, the authors summarize recent research progress on elucidating the molecular mechanisms underlying H. pylori infection in GC development. Notably, CagA protein-a carcinogenic virulence factor predominantly expressed by Asian strains of H. pylori-induces inflammation and excessive ROS production within gastric mucosa cells. Dysregulation of multiple pyroptosis signalling pathways can lead to malignant transformation of these cells. MiRNA-1290 plays a crucial role in GC initiation and progression while serving as an indicator for disease progression dynamics. Pyroptosis exhibits dual roles both promoting carcinogenesis and inhibiting tumour growth; thus it holds potential clinical applications for drug-resistant GC treatment strategies. Furthermore, pyroptosis may play a regulatory role within the immune system during gastric cancer development. Lastly, the authors provide an overview on current concepts regarding pyroptosis as well as insights into miRNA-1290's pathogenicity and clinical value within immune mechanisms associated with GC, aiming to serve as reference material for researchers.
Collapse
Affiliation(s)
- Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University
| | - Yeqiong Xu
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu
| | - Yu Zhao
- Department of Clinical Medicine, Qixiu Campus Medical College of Nantong University, Nantong, China
| | - Chuandan Wan
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| |
Collapse
|
7
|
Zhang Q, Zheng K, Gao Y, Zhao S, Zhao Y, Li W, Nan Y, Li Z, Liu W, Wang X, Chen Y, Liu G, Jin F. Plasma exosomal miR-1290 and miR-29c-3p as diagnostic biomarkers for lung cancer. Heliyon 2023; 9:e21059. [PMID: 37916122 PMCID: PMC10616353 DOI: 10.1016/j.heliyon.2023.e21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Background Enhancing the diagnostic efficacy of early-stage lung cancer is crucial for improving prognosis. The objective of this study was to ascertain dependable exosomal miRNAs as biomarkers for the diagnosis of lung cancer. Methods Exosomal miRNA candidates were identified through miRNA sequencing and subsequently validated in various case-control sets using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The correlation between the expression of exosomal miRNAs and the clinicopathological features of lung cancer was investigated. To assess the diagnostic efficacy of exosomal miRNAs for lung cancer, the receiver operating characteristic (ROC) curve analysis was conducted. The optimal cutoff value of exosomal miRNAs was determined in the testing cohort and subsequently confirmed in the validation cohort. Results The results showed that the expression of exosomal miR-1290 was significantly elevated, while that of miR-29c-3p was significantly decreased in the plasma of lung cancer patients, especially in those with early-stage lung cancer, compared to individuals with benign lung conditions (P < 0.01). Exosomal miR-1290 and miR-29c-3p demonstrated superior diagnostic efficacy compared to conventional tumor biomarkers in distinguishing between lung cancer and benign lung diseases, as evidenced by their respective area under the curve (AUC) values of 0.934 and 0.868. Furthermore, exosomal miR-1290 and miR-29c-3p exhibited higher diagnostic efficiency in early-stage lung cancer than traditional tumor markers, with AUC values of 0.947 and 0.895, respectively. Notably, both exosomal miR-1290 and miR-29c-3p displayed substantial discriminatory capacity in distinguishing between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as indicated by their respective AUC values of 0.810 and 0.842. Conclusions The findings of this study provided evidence that exosomal miR-1290 and miR-29c-3p hold significant potential as biomarkers for the early detection of lung cancer, as well as for differentiating between NSCLC and SCLC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
- Department of Respiration, Eastern Air Force Hospital, NanJing 210000, China
| | - Kaifu Zheng
- Department of General Surgery, the 991th Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang 441000, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Shihong Zhao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yabo Zhao
- Department of Thoracic surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yandong Nan
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Zhengping Li
- Department of General Surgery, the 991th Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang 441000, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Xinxin Wang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yanwei Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Gang Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| |
Collapse
|
8
|
Cao J, Tao X, Shi B, Wang J, Ma R, Zhao J, Tian J, Huang Q, Yu J, Wang L. NKD1 targeting PCM1 regulates the therapeutic effects of homoharringtonine on colorectal cancer. Mol Biol Rep 2023; 50:6543-6556. [PMID: 37338734 DOI: 10.1007/s11033-023-08572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common primary malignancy. Recently, antineoplastic attributes of homoharringtonine (HHT) have attracted lots of attention. This study investigated the molecular target and underlying mechanism of HHT in the CRC process by using a cellular and animal models. METHODS This study first detected the effects of HHT on the proliferation, cell cycle and apoptosis ability of CRC cells using CCK-8, Edu staining, flow cytometry and Western blotting assay. In vitro recovery experiment and in vivo tumorigenesis experiment were used to detect the targeted interaction between HHT and NKD1. After that, the downstream target and mechanism of action of HHT targeting NKD1 was determined using quantitative proteomics combined with co-immunoprecipitation/immunofluorescence assay. RESULTS HHT suppressed CRC cells proliferation by inducing cell cycle arrest and apoptosis in vitro and vivo. HHT inhibited NKD1 expression in a concentration and time dependent manner. NKD1 was overexpressed in CRC and its depletion enhanced the therapeutic sensitivity of HHT on CRC, which indicating that NKD1 plays an important role in the development of CRC as the drug delivery target of HHT. Furthermore, proteomic analysis revealed that PCM1 participated the process of NKD1-regulated cell proliferation and cell cycle. NKD1 interacted with PCM1 and promoted PCM1 degradation through the ubiquitin-proteasome pathway. The overexpression of PCM1 effectively reversed the inhibition of siNKD1 on cell cycle. CONCLUSIONS The present findings revealed that HHT blocked NKD1 expression to participate in inhibiting cell proliferation and inducing cell apoptosis, ultimately leading to obstruction of CRC development through NKD1/PCM1 dependent mechanism. Our research provide evidence for clinical application of NKD1-targeted therapy in improving HHT sensitivity for CRC treatment.
Collapse
Affiliation(s)
- Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jufen Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhai Tian
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Huang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Yu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Xu XH, Shao SL, Guo D, Ge LN, Wang Z, Liu P, Tao YY. Roles of microRNAs and exosomes in Helicobacter pylori associated gastric cancer. Mol Biol Rep 2023; 50:889-897. [PMID: 36367659 DOI: 10.1007/s11033-022-08073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Helicobacter pylori (H. pylori) is a common pathogen that infects more than half of the world's population. Its infection can not only lead to a variety of gastrointestinal diseases, such as chronic gastritis and gastric cancer (GC) but also be associated with many extra-gastrointestinal diseases. Exosomes, as a new intercellular information transmission medium, can carry biological signal molecules such as microRNAs (miRNAs) to regulate a variety of cellular physiological activities and are involved in multiple cancer processes. In this article, we provide a systematic review on the role of exosomal miRNAs in H. pylori-associated GC.
Collapse
Affiliation(s)
- Xiao-Han Xu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Shu-Li Shao
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong, 264200, People's Republic of China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong, 264200, People's Republic of China
| | - Li-Na Ge
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Zan Wang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong, 264200, People's Republic of China
| | - Yuan-Yong Tao
- Department of Laboratory Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, People's Republic of China.
| |
Collapse
|
10
|
Faraji G, Moeini P, Ranjbar MH. Exosomal microRNAs in breast cancer and their potential in diagnosis, prognosis and treatment prediction. Pathol Res Pract 2022; 238:154081. [PMID: 35994809 DOI: 10.1016/j.prp.2022.154081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Abstract
The significance of exosomal microRNAs (EmiRs) in breast cancer (BC) diagnosis has been widely addressed over the past decades. However, little information is still available regarding these reliable biomarkers' impacts on BC early diagnosis, prognosis, and treatment outcome predictions, but their great potential in spotting BC early and their predictive essence in BC prognosis and treatment results are promising against this common cancer. The present review focuses on the most recent findings and advancements of EmiRs applications in BC early diagnosis and treatment prediction and identifies current helpful EmiRs that are widely used in this regard.
Collapse
Affiliation(s)
- Ghazale Faraji
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mohammad Hasan Ranjbar
- Department of Biochemistry, Faculty of Advanced Sciences and Technology, Islamic Azad University, Eslamshahr, Iran.
| |
Collapse
|
11
|
Tsukada F, Takashima S, Wakihara Y, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle. Int J Mol Sci 2022; 23:ijms231810782. [PMID: 36142686 PMCID: PMC9503721 DOI: 10.3390/ijms231810782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). Most BLV-infected cattle show no clinical signs and only some develop EBL. The pathogenesis of EBL remains unclear and there are no methods for predicting EBL before its onset. Previously, it was reported that miRNA profiles in milk small extracellular vesicles (sEVs) were affected in cattle in the late stage of BLV infection. It raised a possibility that miRNA profile in milk sEVs from EBL cattle could be also affected. To characterize the difference in milk of EBL cattle and healthy cattle, we examined the miRNA profiles in milk sEVs from four EBL and BLV-uninfected cattle each using microarray analysis. Among the detected miRNAs, three miRNAs—bta-miR-1246, hsa-miR-1290, and hsa-miR-424-5p—which were detectable using quantitative real-time PCR (qPCR) and are associated with cancers in humans—were selected as biomarker candidates for EBL. To evaluate the utility of these miRNAs as biomarkers for EBL, their levels were measured using milk that was freshly collected from 13 EBL and seven BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p, but not hsa-miR-1290, were detected using qPCR and their levels in milk sEVs from EBL cattle were significantly higher than those in BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p in sEVs may promote metastasis by targeting tumor suppressor genes, resulting in increased amounts in milk sEVs in EBL cattle. These results suggest that bta-miR-1246 and hsa-miR-424-5p levels in milk sEVs could serve as biomarkers for EBL.
Collapse
Affiliation(s)
- Fumi Tsukada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
- Institute of Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshiko Wakihara
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Institute of Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Correspondence:
| |
Collapse
|
12
|
The Oral Tumor Cell Exosome miR-10b Stimulates Cell Invasion and Relocation via AKT Signaling. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3188992. [PMID: 36072619 PMCID: PMC9398826 DOI: 10.1155/2022/3188992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
An exosome derived from a cancer cell has been identified to regulate intercellular communication. However, the roles of oral cancer-derived ectodomains in tumor metastasis need to be investigated further. We investigated their roles in oral cancer cells in this paper. The enforcing effect on oral cancer cells was attributed primarily to miR-10b, a gene with a high level in exosomes that is transferred to recipient cells via oral cancer-derived exosomes. Exosomes were obtained by exosome isolation reagents. Also, exosome identification and analysis were performed by electron microscopy. The expression of miRNAs was analyzed by qRT-PCR. Protein expression was analyzed by Western blot. Also, invasion and migration experiments were performed to assay and evaluate the function of exosomal miR-10b. Exosome-mediated transfer of miR-10b promoted oral cancer cell behaviors, according to the findings. Finally, it was discovered that AKT signaling participates in regulating exosome-mediated invasion and migration of oral cancer cells and its activation reduced the inhibitory effect of miR-10b knockdown on oral cancer cells. Exosomal miR-10b derived from oral cancer cells enhances cell invasion and migration by activating AKT signaling.
Collapse
|
13
|
Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, Wang LD. Long non-coding RNA ZNF667-AS1 retards the development of esophageal squamous cell carcinoma via modulation of microRNA-1290-mediated PRUNE2. Transl Oncol 2022; 21:101371. [PMID: 35504176 PMCID: PMC9079108 DOI: 10.1016/j.tranon.2022.101371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
|
14
|
Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M, Xing W. Circular_0086414 induces SPARC like 1 ( SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered 2022; 13:12099-12114. [PMID: 35549806 PMCID: PMC9275914 DOI: 10.1080/21655979.2022.2073114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Circular RNA (circRNA) plays an important role in cancer progression. Here, we investigated the function of circ_0086414 in the malignant progression of esophageal cancer (EC). RNA expression of circ_0086414, microRNA-1290 (miR-1290), and SPARC like 1 (SPARCL1) was detected by quantitative real-time polymerase chain reaction. The protein levels of N-cadherin, E-cadherin, and SPARCL1 were checked by Western blotting analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-29-deoxyuridine (EdU), and cell colony formation assays. Cell invasion and apoptosis were analyzed by transwell invasion assay and flow cytometry analysis, respectively. Glycolysis was evaluated by analyzing glucose consumption and lactate production. In an xenograft mouse model, the effect of circ_0086414 on tumor tumorigenesis was investigated. The interactions among circ_0086414, miR-1290, and SPARCL1 were identified by dual-luciferase reporter and RNA pull-down assays. Results showed that circ_0086414 and SPARCL1 expression were significantly downregulated, while miR-1290 was upregulated in EC tissues and cells. EC patients with low circ_0086414 expression had a poor prognosis. Increasing circ_0086414 expression led to decreased EC cell proliferation, invasion and glycolysis and increased cell apoptosis, accompanied by a decrease of N-cadherin expression and an increase of E-cadherin expression. Also, the enforced expression of circ_0086414 delayed tumor tumorigenesis. Besides, circ_0086414 acted as a miR-1290 sponge and regulated EC cell processes by binding to the miRNA. MiR-1290 also participated in EC malignant progression through SPARCL1. Further, circ_0086414 stimulated SPARCL1 production by negatively regulating miR-1290. Thus, circ_0086414 inhibited EC cell malignancy through the miR-1290/SPARCL1 pathway, providing a reliable target for the therapy of EC.
Collapse
Affiliation(s)
- Qingfeng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Qian
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochao Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Wang W, Jo H, Park S, Kim H, Kim SI, Han Y, Lee J, Seol A, Kim J, Lee M, Lee C, Dhanasekaran DN, Ahn T, Song YS. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett 2022; 542:215735. [DOI: 10.1016/j.canlet.2022.215735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
|
16
|
Li Y, He J, Yu L, Yang Q, Du J, Chen Y, Tang W. Hsa‐miR‐1290 is associated with stemness and invasiveness in prostate cancer cell lines by targeting RORA. Andrologia 2022; 54:e14396. [PMID: 35220610 DOI: 10.1111/and.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuehua Li
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jiang He
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Lu Yu
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Qixin Yang
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jing Du
- Department of Anesthesiology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Yirong Chen
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Tang
- Department of Urology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
17
|
Li J, Sun L, Chen Y, Zhu J, Shen J, Wang J, Gu Y, Zhang G, Wang M, Shi T, Chen W. Gastric cancer-derived exosomal miR-135b-5p impairs the function of Vγ9Vδ2 T cells by targeting specificity protein 1. Cancer Immunol Immunother 2022; 71:311-325. [PMID: 34159436 DOI: 10.1007/s00262-021-02991-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that tumor-derived exosomes participate in the communication between tumor cells and their microenvironment and mediate malignant biological behaviors including immune escape. In this study, we found that gastric cancer (GC) cell-derived exosomes could be effectively uptaken by Vγ9Vδ2 T cells, decrease the cell viability of Vγ9Vδ2 T cells, induce apoptosis, and reduce the production of cytotoxic cytokines IFN-γ and TNF-α. Furthermore, we demonstrated that exosomal miR-135b-5p was delivered into Vγ9Vδ2 T cells. Exosomal miR-135b-5p impaired the function of Vγ9Vδ2 T cells by targeting specificity protein 1 (SP1). More importantly, blocking the SP1 function by Plicamycin, an SP1 inhibitor, abolished the effect of stable miR-135b-5p knockdown GC cell-derived exosomes on Vγ9Vδ2 T cell function. Collectively, our results suggest that GC cell-derived exosomes impair the function of Vγ9Vδ2 T cells via miR-135b-5p/SP1 pathway, and targeting exosomal miR-135b-5p/SP1 axis may improve the efficiency of GC immunotherapy based on Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Yanjun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jinghan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jin Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Center, 355 Shizi Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Province, 708 Renmin Road, Suzhou, 215100, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Province, 50 Donghuan Road, Suzhou, 215100, China.
| |
Collapse
|
18
|
Tang D, Liu S, Shen H, Deng G, Zeng S. Extracellular Vesicles Promote the Formation of Pre-Metastasis Niche in Gastric Cancer. Front Immunol 2022; 13:813015. [PMID: 35173726 PMCID: PMC8841609 DOI: 10.3389/fimmu.2022.813015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Globally, gastric cancer (GC) ranks fourth in the incidence of malignant tumors. The early clinical manifestations of GC lack specificity. Most patients are already at an advanced stage when they are first diagnosed, and their late progression is mainly due to peritoneal metastasis. A pre-metastatic microenvironment is formed, before the macroscopic tumor metastasis. Extracellular vesicles (EVs) are nanovesicles released by cells into body fluids. Recent studies have shown that EVs can affect the tumor microenvironment by carrying cargos to participate in cell-to-cell communication. EVs derived from GC cells mediate the regulation of the pre-metastasis niche and act as a coordinator between tumor cells and normal stroma, immune cells, inflammatory cells, and tumor fibroblasts to promote tumor growth and metastasis. This review highlights the regulatory role of EVs in the pre-metastatic niche of GC and mulls EVs as a potential biomarker for liquid biopsy.
Collapse
Affiliation(s)
- Diya Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Gongping Deng, ; Shan Zeng,
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gongping Deng, ; Shan Zeng,
| |
Collapse
|
19
|
Guz M, Jeleniewicz W, Cybulski M. An Insight into miR-1290: An Oncogenic miRNA with Diagnostic Potential. Int J Mol Sci 2022; 23:1234. [PMID: 35163157 PMCID: PMC8835968 DOI: 10.3390/ijms23031234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
For more than two decades, the view of the roles of non-coding RNAs (ncRNAs) has been radically changing. These RNA molecules that are transcribed from our genome do not have the capacity to encode proteins, but are critical regulators of gene expression at different levels. Our knowledge is constantly enriched by new reports revealing the role of these new molecular players in the development of many pathological conditions, including cancer. One of the ncRNA classes includes short RNA molecules called microRNAs (miRNAs), which are involved in the post-transcriptional control of gene expression affecting various cellular processes. The aberrant expression of miRNAs with oncogenic and tumor-suppressive function is associated with cancer initiation, promotion, malignant transformation, progression and metastasis. Oncogenic miRNAs, also known as oncomirs, mediate the downregulation of tumor-suppressor genes and their expression is upregulated in cancer. Nowadays, miRNAs show promising application in diagnosis, prediction, disease monitoring and therapy response. Our review presents a current view of the oncogenic role of miR-1290 with emphasis on its properties as a cancer biomarker in clinical medicine.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (W.J.); (M.C.)
| | | | | |
Collapse
|
20
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A Review on the Role of miR-1290 in Cell Proliferation, Apoptosis and Invasion. Front Mol Biosci 2022; 8:763338. [PMID: 35004844 PMCID: PMC8740132 DOI: 10.3389/fmolb.2021.763338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to affect expression of several genes contributing in important biological processes. miR-1290 a member of this family with crucial roles in the carcinogenesis. This miRNA is transcribed from MIR1290 gene on chromosome 1p36.13. This miRNA has interactions with a number of mRNA coding genes as well as non-coding RNAs SOCS4, GSK3, BCL2, CCNG2, KIF13B, INPP4B, hMSH2, KIF13B, NKD1, FOXA1, IGFBP3, CCAT1, FOXA1, NAT1, SMEK1, SCAI, ZNF667-AS1, ABLIM1, Circ_0000629 and CDC73. miR-1290 can also regulate activity of JAK/STAT3, PI3K/AKT, Wnt/β-catenin and NF-κB molecular pathways. Most evidence indicates the oncogenic roles of miR-1290, yet controversial evidence also exists. In the present review, we describe the results of in vitro, animal and human investigations about the impact of miR-1290 in the development of malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kalhori MR, Soleimani M, Arefian E, Alizadeh AM, Mansouri K, Echeverria J. The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or onco-suppressor microRNA? J Cell Biochem 2021; 123:506-531. [PMID: 34897783 DOI: 10.1002/jcb.30191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Cancer is one of the leading causes of death in humans because of the lack of early diagnosis, distant metastases, and the resistance to adjuvant therapies, including chemotherapy and radiotherapy. In addition to playing an essential role in tumor progression and development, microRNAs (miRNAs) can be used as a robust biomarker in the early detection of cancer. MiR-1290 was discovered for the first time in human embryonic stem cells, and under typical physiological situations, plays an essential role in neuronal differentiation and neural stem cell proliferation. Its coding sequence is located at the 1p36.13 regions in the first intron of the aldehyde dehydrogenase 4 gene member A1. miR-1290 is out of control in many cancers such as breast cancer, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, lung cancer, pancreatic cancer, and plays a vital role in their development. Therefore, it is suggested that miR-1290 can be considered as a potential diagnostic and therapeutic target in many cancers. In addition to the importance of miR-1290 in the noninvasive diagnosis of various cancers, this systematic review study discussed the role of miR-1290 in altering the expression of different genes involved in cancer development and chemo-radiation resistance. Moreover, it considered the regulatory effect of natural products on miR-1290 expression and the interaction of lncRNAs by miR-1290.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, Molecular Virology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Wang Y, Yang C, Li W, Shen Y, Deng J, Lu W, Jin J, Liu Y, Liu Q. Identification of colon tumor marker NKD1 via integrated bioinformatics analysis and experimental validation. Cancer Med 2021; 10:7383-7394. [PMID: 34547189 PMCID: PMC8525156 DOI: 10.1002/cam4.4224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer is an important death‐related disease in the worldwide. However, specific colon cancer tumor markers currently used for diagnosis and treatment are few. The purpose of this study is to screen the potential colon cancer markers by bioinformatics and verify the results with experiments. Methods Gene expression data were downloaded from two different databases: TCGA database and GEO datasets, which were then analyzed by two different methods (difference analysis and WGCNA method). Venn and PPI analysis obtained the potential core genes, which were then performed the GO enrichment and KEGG pathway analysis. Expressions levels of NKD1 in colon carcinoma tissues were further confirmed by immunohistochemical staining and western blot assays. Moreover, the function was measured by MTT, clone formation, and tumor transplantation experiments. Importantly, co‐immunoprecipitation, immunofluorescence, and protein stability assays were further performed to explore the underlying mechanism of NKD1 promoting cell proliferation. Results Nine potential core genes highly expressed in colon cancer samples were screened out by bioinformatics analysis. NKD1, one of the hub genes, highly expressed in the colon carcinoma tissues could enhance the proliferation of colon cancer cells. Mechanism research demonstrated that NKD1 was essential for the combination between Wnt signalosome (DVL) and β‐catenin, and that NKD1 knockout remarkably decreased the β‐catenin expression. Immunofluorescence assays further implied that NKD1 knockout significantly inhibited β‐catenin nuclear accumulation. Importantly, the stability of β‐catenin proteins was maintained by NKD1 in the colon cancer cells. Conclusion We believe that NKD1 well expressed in the colorectal carcinoma tissues can enhance the proliferation of colon cancer cells. Furthermore, the functions that NKD1 may have in colon cancer cells should be different from that NKD1 has played in the zebrafish. Thus, NKD1 could be a specific colorectal cancer marker.
Collapse
Affiliation(s)
- Yue Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Changzhou, China.,Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Chunxia Yang
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Wenjing Li
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Ying Shen
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Jianzhong Deng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Wenbin Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| | - Yongping Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Changzhou, China
| | - Qian Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, China
| |
Collapse
|
24
|
Kang X, Li H, Zhang Z. Sevoflurane blocks glioma malignant development by upregulating circRELN through circRELN-mediated miR-1290/RORA axis. BMC Anesthesiol 2021; 21:213. [PMID: 34479497 PMCID: PMC8414757 DOI: 10.1186/s12871-021-01427-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sevoflurane (Sev) has been reported to inhibit cancer development, and sevoflurane treatment in cancers is implicated with the deregulation of specific non-coding RNAs (ncRNAs). This study aimed to investigate the relationship between sevoflurane and circular RNA reelin (circRELN) in glioma. Methods The expression of circRELN, microRNA-1290 (miR-1290) and RAR-related orphan receptor A (RORA) was measured by quantitative real-time PCR (qPCR). Cell proliferative capacity was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis and cell cycle distribution were monitored by flow cytometry assay. Cell migration was assessed by wound healing assay and transwell assay, and cell invasion was assessed by transwell assay. The protein levels of matrix metalloproteinase-2 (MMP2), MMP9 and RORA were quantified by western blot. Tumor growth in vivo was assessed by Xenograft models. The binding relationship between miR-1290 and circRELN or RORA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results We found that circRELN expression was declined in glioma tissues and cells, while Sev treatment enhanced circRELN expression. In function, Sev notably inhibited glioma cell proliferation, migration and invasion and promoted apoptosis and cell cycle arrest, while circRELN knockdown reversed these effects. MiR-1290 served as a target of circRELN, and glioma cell malignant phenotypes recovered by circRELN knockdown were partly repressed by miR-1290 deficiency. In addition, RORA was a target of miR-1290, and glioma cell malignant phenotypes promoted by miR-1290 restoration were partly blocked by RORA overexpression. CircRELN regulated RORA expression by targeting miR-1290. In Xenograft models, Sev inhibited tumor growth by upregulating circRELN. Conclusion Sev blocked the progression of glioma by increasing circRELN expression, and circRELN played roles in glioma partly by regulating the miR-1290/RORA network. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01427-1.
Collapse
Affiliation(s)
- Xiaofang Kang
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Hongxia Li
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Zaiwang Zhang
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China.
| |
Collapse
|
25
|
Xu L, Cai Y, Chen X, Zhu Y, Cai J. Circulating MiR-1290 as a potential diagnostic and disease monitoring biomarker of human gastrointestinal tumors. BMC Cancer 2021; 21:989. [PMID: 34479528 PMCID: PMC8417985 DOI: 10.1186/s12885-021-08729-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal tumors are a leading cause of mortality worldwide. As shown in our previous study, miR-1290 is overexpressed in colorectal cancer (CRC) and promotes tumor progression. We therefore aimed to explore the potential of circulating miR-1290 as a biomarker for gastrointestinal cancer. Methods A serum miRNA sequencing analysis was performed. Then, circulating miRNA detection technologies were established. The expression of miR-1290 was analyzed in gastrointestinal tumor cell lines and culture supernatants. Expression levels of circulating miR-1290 in clinical samples were examined. Associations between miR-1290 expression and clinicopathologic characteristics were analyzed. Xenograft models were generated to assess the fluctuation in serum miR-1290 levels during disease progression. Results Through miRNA sequencing, we identified that miR-1290 was overexpressed in serum samples from patients with CRC. We confirmed that human gastrointestinal tumor cells express and secrete miR-1290. The circulating miR-1290 levels was up-regulated in patients with pancreatic cancer (PC) (p < 0.01), CRC (p < 0.05), and gastric cancer (GC) (p < 0.01). High miR-1290 expression levels were associated with tumor size, lymphatic invasion, vascular invasion, distant metastasis, tumor differentiation and AJCC stage in patients with PC and CRC. The area under the curve (AUC) was 0.8857 in patients with PC, with 60.9% sensitivity and 90.0% specificity. The AUC was 0.7852 in patients with CRC, with 42.0% sensitivity and 90.0% specificity. In patients with GC, the AUC was 0.6576, with 26.0% sensitivity and 90.0% specificity. The in vivo model verified that the circulating miR-1290 level was significantly increased after tumor formation and decreased after drug treatment. Conclusions Our findings indicate that circulating miR-1290 is a potential biomarker for gastrointestinal cancer diagnosis and monitoring. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08729-0.
Collapse
Affiliation(s)
- Liyi Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, Province, China
| | - Yangke Cai
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, Province, China
| | - Xiao Chen
- Emergency Department, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yongliang Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, Province, China.
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, Province, China.
| |
Collapse
|
26
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Liang Y, Liu Y, Zhang Q, Zhang H, Du J. Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 2021; 231:102-112. [PMID: 33321257 DOI: 10.1016/j.trsl.2020.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is a highly prevalent malignancy featured by dismal oncological outcomes. Accumulating pieces of evidence have consensus over the therapeutic significance of extracellular vesicles (EVs) and its role in carcinogenesis. Here, we planned to uncover EVs' role in GC by shuttling microRNA-1290 (miR-1290) and to identify the possible molecular mechanism associated with Grhl2, PD-L1, and ZEB1. Grhl2 was under-expressed in GC tissues, exhibiting a negative correlation with PD-L1 expression. In addition, Grhl2 promoted T cell proliferation by down-regulating PD-L1 via inhibiting ZEB1, while miR-1290 was found to negatively regulate Grhl2. EVs were also isolated from GC cells or normal gastric epithelial cells and identified with the presence of EV markers. miR-1290 expression was determined to be enriched in the EVs derived from GC cells and observed to promote the suppressive action of GC cells on T cell activation by up-regulating PD-L1 via the Grhl2/ZEB1 pathway in the co-culture system of GC cells with or without treatment of EVs with T cells. Moreover, we also developed a mouse model of GC and injected the EVs derived from miR-1290-inhibitor-treated GC cells into the tumor-bearing mice for further validation of mechanism in vivo. Intriguingly, the pivotal role of EVs-shuttled miR-1290 as an oncomiR was demonstrated in vivo. Collectively, we found that miR-1290 in EVs secreted from GC cells contributed to immune escape through the Grhl2/ZEB1/PD-L1 axis.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer(2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Heng Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Jiang Du
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
28
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
29
|
Yin G, Kong W, Zheng S, Shan Y, Zhang J, Ying R, Wu H. Exosomal miR-130a-3p promotes the progression of differentiated thyroid cancer by targeting insulin-like growth factor 1. Oncol Lett 2021; 21:283. [PMID: 33732359 PMCID: PMC7905609 DOI: 10.3892/ol.2021.12544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to determine the expression and diagnostic value of exosomal miR-130a-3p in the serum of patients with differentiated thyroid cancer (DTC). Exosomes were isolated from the serum of patients with DTC and were identified using transmission electron microscopy. A novel exosomal miRNA, miR-130a-3p, was found to be significantly decreased in the serum of patients with DTC compared with those with benign thyroid tumors and healthy controls. Further study revealed that exosomal miR-130a-3p was correlated with the malignant characteristics of DTC, including tumor diameter, lymph node metastasis (LNM) and higher TNM stage. Receiver operating characteristic curve analysis demonstrated that the area under the curve of exosomal miR-130a-3p was better compared with that of TgAb and Tg in patients with DTC. More importantly, the combined use of exosomal miR-130a-3p, TgAb and Tg significantly enhanced the sensitivity and specificity, indicating that exosomal miR-130a-3p is a sensitive biomarker for DTC. A dual luciferase reporter assay indicated that insulin-like growth factor (IGF)-1 was a target gene of miR-130a-3p. Pearson's correlation analysis revealed a negative correlation between serum IGF-1 and serum exosomal miR-130a-3p levels. More importantly, exosomes from patients with DTC increased the expression of IGF-1 and p-PI3K/p-AKT, but these effects were abolished by siRNA targeting IGF-1 in TPC-1 cells. Taken together, the findings of the present study indicated that reduced exosomal miR-130a-3p levels were associated with the risk of DTC and may be used as a biomarker for the diagnosis of DTC.
Collapse
Affiliation(s)
- Guang Yin
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wencheng Kong
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Sixin Zheng
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yuqiang Shan
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Zhang
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongchao Ying
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Wu
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
30
|
Ouyang J, Xie Z, Lei X, Tang G, Gan R, Yang X. Clinical crosstalk between microRNAs and gastric cancer (Review). Int J Oncol 2021; 58:7. [PMID: 33649806 PMCID: PMC7895535 DOI: 10.3892/ijo.2021.5187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, there were over 1 million new gastric cancer (GC) patients in 2018 and GC has become the sixth most common cancer worldwide. GC caused 783,000 deaths worldwide in 2018, making it the third most deadly cancer type. miRNAs are short (~22 nucleotides in length) non‑coding RNA molecules, which can regulate gene expression passively at a post‑transcriptional level. There are more and more in‑depth studies on miRNAs. There are numerous conclusive evidences that there is an inseparable link between miRNAs and GC. miRNAs can affect the entire process of GC, including the oncogenesis, development, diagnosis, treatment and prognosis of GC. Although many miRNAs have been linked to GC, few can be applied to clinical practice. This review takes the clinical changes of GC as a clue and summarizes the miRNAs related to GC that have confirmed the mechanism of action in the past three years. Through in‑depth study and understanding of the mechanism of those miRNAs, we predict their possible clinical uses, and suggest some new insights to overcome GC.
Collapse
Affiliation(s)
- Jing Ouyang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, University of South China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China
| |
Collapse
|
31
|
Jiao Y, Zhang L, Li J, He Y, Zhang X, Li J. Exosomal miR-122-5p inhibits tumorigenicity of gastric cancer by downregulating GIT1. Int J Biol Markers 2021; 36:36-46. [PMID: 33752480 DOI: 10.1177/1724600821990677] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND microRNAs (miRNAs) are non-coding RNAs with important roles in the progression of human cancers, including gastric cancer. Exosomes are extracellular vesicles, which could transfer numerous noncoding RNAs, such as miRNAs. Here, in our study, we intended to investigate the role of exosomal miR-122-5p in gastric cancer progression. METHODS Exosomes were isolated utilizing commercial kit or ultracentrifugation. Biomarkers of exosomes or epithelia-mesenchymal transition (EMT) were monitored by western blot. Expression levels of miR-122-5p and G-protein-coupled receptor kinase interacting protein-1 (GIT1) were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation and apoptosis were assessed by colony formation assay, methyl thiazolyl tetrazolium assay and flow cytometry. Cell metastasis was evaluated via Transwell assay. The interaction between miR-122-5p and GIT1 was validated by dual-luciferase reporter assay. Furthermore, tumor growth in vivo was detected by xenograft assay. RESULTS Exosomes were successfully isolated. MiR-122-5p was downregulated in exosomes derived from the serum of gastric cancer patients. Exosomal miR-122-5p could hinder gastric cancer cell proliferation and metastasis in vitro and tumor growth in vivo. Knockdown of GIT1 also inhibited gastric cancer cell proliferation and metastasis. Exosomal miR-122-5p targeted GIT1 to alter cellular behaviors of gastric cancer cells. CONCLUSION Exosomal miR-122-5p suppressed gastric cancer progression by targeting GIT1.
Collapse
Affiliation(s)
- Yigang Jiao
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Li Zhang
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Jun Li
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Yuqi He
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Xin Zhang
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Jingzhe Li
- Department of Oncology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Che J, Xu C, Wu Y, Jia P, Han Q, Ma Y, Wang X, Zheng Y. MiR-1290 promotes myoblast differentiation and protects against myotube atrophy via Akt/p70/FoxO3 pathway regulation. Skelet Muscle 2021; 11:6. [PMID: 33722298 PMCID: PMC7958887 DOI: 10.1186/s13395-021-00262-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sarcopenia is a common skeletal disease related to myogenic disorders and muscle atrophy. Current clinical management has limited effectiveness. We sought to investigate the role of miR-1290 in myoblast differentiation and muscle atrophy. METHODS By transfecting miR-1290 into C2C12 cells, we investigated whether miR-1290 regulates myogenesis and myotube atrophy via AKT/P70 signaling pathway. MHC staining was performed to assess myoblast differentiation. Differentiation-related MHC, Myod, and Myog protein levels, and atrophy-related MuRF1 and atrogin-1 were explored by western blot. An LPS-induced muscle atrophy rat model was developed. RT-PCR was conducted to analyze miR-1290 serum levels in muscle atrophy patients and normal controls (NCs). RESULTS The miR-1290 transfection increased MHC-positive cells and MHC, Myod, and Myog protein levels in the miR-1290 transfection group, demonstrating that miR-1290 promoted C2C12 myoblast differentiation. Myotube diameter in the miR-1290 transfection group was higher than in the TNF-α-induced model group. Western blot analysis showed decreased MuRF1 and atrogin-1 levels in the miR-1290 transfection group compared with the model group, demonstrating that miR-1290 protected against myoblast cellular atrophy. Luciferase assay and western blot analysis showed that miR-1290 regulation was likely caused by AKT/p70/FOXO3 phosphorylation activation. In the LPS-induced muscle atrophy rat model, miR-1290 mimics ameliorated gastrocnemius muscle loss and increased muscle fiber cross-sectional area. Clinically, miR-1290 serum level was significantly decreased in muscle atrophy patients. CONCLUSIONS We found that miR-1290 enhances myoblast differentiation and inhibits myotube atrophy through Akt/p70/FoxO3 signaling in vitro and in vivo. In addition, miR-1290 may be a potential therapeutic target for sarcopenia treatment.
Collapse
Affiliation(s)
- Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China
| | - Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Yuanyuan Wu
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China
| | - Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China
| | - Xiaolei Wang
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, No. 221, West YanAn Rd, Shanghai, 200040, P.R. China.
| |
Collapse
|
33
|
Zhu AK, Shan YQ, Zhang J, Liu XC, Ying RC, Kong WC. Exosomal NNMT from peritoneum lavage fluid promotes peritoneal metastasis in gastric cancer. Kaohsiung J Med Sci 2021; 37:305-313. [PMID: 33508890 DOI: 10.1002/kjm2.12334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
Peritoneal metastasis (PM) is the major cause of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. The oncogenic role of Nicotinamide N-methyltransferase (NNMT) in GC has been reported, but the role of secreted NNMT that is transported by exosomes remains unknown. In this study, exosomes were isolated from GC patients with or without PM and from GC cell line, including GC-114, GC-026, MKN45, and SNU-16 cells. The contents of NNMT were significantly enhanced in exosomes isolated from GC patients with PM compared with those from GC patients without PM. Furthermore, the levels of NNMT were significantly enhanced in exosomes from GC cell lines relative to those from normal human gastric epithelial cell line GES-1 cells. These data indicate that NNMT may be involved in intercellular communication for peritoneal dissemination. Moreover, colocalization of GC-derived exosomal NNMT was found in human peritoneal mesothelial cell line HMrSV5 cells. Additionally, relative to GES-1 exosomes, SNU-16 exosomes significantly activated TGF-β/smad2 signaling in HMrSV5 cells. However, when NNMT was silenced, the activation of TGF-β/smad2 by SNU-16 exosomes was abolished in HMrSV5 cells. We propose that NNMT-containing exosomes derived from GC cells could promote peritoneal metastasis via TGF-β/smad2 signaling.
Collapse
Affiliation(s)
- A-Kao Zhu
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Yu-Qiang Shan
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Jian Zhang
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Xin-Chun Liu
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Rong-Chao Ying
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Wen-Cheng Kong
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| |
Collapse
|
34
|
The Significance of Exosomal RNAs in the Development, Diagnosis, and Treatment of Gastric Cancer. Genes (Basel) 2021; 12:genes12010073. [PMID: 33430032 PMCID: PMC7826966 DOI: 10.3390/genes12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. Exosomes, a subset of extracellular vesicles with an average diameter of 100 nm, contain and transfer a variety of functional macromolecules such as proteins, lipids, and nucleic acids. A large number of studies indicated that exosomes can play a significant role in the initiation and development of GC via facilitating intercellular communication between gastric cancer cells and microenvironment. Exosomal RNAs, one of the key functional cargos, are involved in the pathogenesis, development, and metastasis of GC. In addition, recent studies elucidated that exosomal RNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets for GC. In this review, we summarized the function of exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which may further unveil the functions of exosome and promote the potentially diagnostic and therapeutic application of exosomes in GC.
Collapse
|
35
|
Kong W, Liu X, Yin G, Zheng S, Zhu A, Yu P, Shan Y, Ying R, Zhang J. Extracellular vesicle derived miR-544 downregulates expression of tumor suppressor promyelocytic leukemia zinc finger resulting in increased peritoneal metastasis in gastric cancer. Aging (Albany NY) 2020; 12:24009-24022. [PMID: 33221764 PMCID: PMC7762464 DOI: 10.18632/aging.104082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Peritoneal metastasis (PM) is the main cause of poor prognosis in patients with advanced gastric cancer (GC). Increasing evidence has suggested that cancer-associated EVs in body fluids may assist in the diagnosis and treatment of GC. Here, we investigated the role of GC-derived EVs in PM development. Our results demonstrate that expression of the tumor suppressor promyelocytic leukemia zinc finger (PLZF) is decreased in GC tissues and PM lesions from GC patients. PLZF suppression promoted migration and invasion of peritoneal mesothelial HMrSV5 cells, while PLZF overexpression suppressed HMrSV5 cell migration and invasion. Microarray analysis revealed significantly upregulated expression of several miRNAs in EVs isolated from GC patients with PM, including miR-544. The increased miR-544 expression was confirmed in GC tissues and PM-derived EVs. Transfection with miR-544 reduced PLZF expression in HMrSV5 cells, while miR-544 inhibition increased PLZF expression. Incubation of GC cells with peritoneal mesothelial HMrSV5 cells showed that miR-544 could be transferred from GC-derived EVs to peritoneal cells, where it suppressed the PLZF expression. These findings indicate that EV-mediated transfer of miR-544 decreases the PLZF expression in PM lesions, which suggests miR-544 could potentially serve as a diagnostic biomarker and therapeutic target for treatment of GC patients.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Xinchun Liu
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Guang Yin
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Sixin Zheng
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Akao Zhu
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Panpan Yu
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Yuqiang Shan
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Rongchao Ying
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Jian Zhang
- Department of General Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| |
Collapse
|
36
|
Yan M, Shen M, Xu L, Huang J, He G, An M, Li X, Gao Z, Meng X. Inactivation of Pancreatic Stellate Cells by Exendin-4 Inhibits the Migration and Invasion of Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:9455-9463. [PMID: 33061431 PMCID: PMC7522302 DOI: 10.2147/ott.s259853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Pancreatic stellate cells (PSCs) are precursor cells of cancer-associated fibroblasts that promote tumor proliferation, invasion, and metastasis. The glucagon-like peptide-1 receptor agonist exendin-4 has been reported to exhibit anticancer effects against several tumor cells; however, the function and mechanism underlying the effects of exendin-4 on pancreatic cancer cells remain unclear. Methods Gene expression levels were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assay. Cell viability, migration and invasion were assessed using the cell counting kit-8 (CCK-8), wound healing, and transwell assays, respectively. A xenografted tumor model was established in mouse to evaluate the effects of exendin-4 in vivo. Results Exendin-4 treatment led to the inactivation of PSCs and suppressed their proliferation and migration. Moreover, we also found that exendin-4 attenuated NF-κB-dependent SDF-1 secretion. Furthermore, pancreatic cancer cells incubated with conditioned medium obtained from exendin-4-treated PSCs showed a decreased ability to proliferate, migrate, and invade as compared to the control cells, which is similar to the effects induced by the CXCR4 inhibitor, AMD3100. Consistent with in vitro results, we also confirmed that exendin-4 indirectly targeted pancreatic cancer cells in vivo by attenuating the function of PSCs and suppressing the deposition of extracellular matrix. Conclusion These results revealed that exendin-4-treated PSCs could suppress pancreatic cancer cell proliferation and invasion, offering a potential strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Meizhu Yan
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Manru Shen
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Linfang Xu
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Jiying Huang
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Guijun He
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Min An
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Xiaocui Li
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Zhenjun Gao
- Department of Gastroenterology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| | - Xin Meng
- Department of Hospital Infection Management, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, People's Republic of China
| |
Collapse
|
37
|
Yu Y, Han S, Li M, Song Y, Qi F. Circ_0004913 sponges miR-1290 and regulates FOXC1 to inhibit the proliferation of hepatocellular carcinoma. Cancer Cell Int 2020. [DOI: 10.1186/s12935-020-01521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Circular RNA (circRNA), an novel type of non-coding RNA, could interact with miRNA and protein molecules to regulate the occurrence and progression of hepatocellular carcinoma (HCC). However, little is known about the pathogenesis of circ_0004913 in HCC.
Materials
Through the GEO (Gene Expression Omnibus database) to find dysfunctional circRNAs in HCC, and circ_0004913 was selected as the research object. Quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression level of circ_0067934 in HCC tissues and cells. CCK-8, Edu and flow cytometry assays were used to determine the malignant behavior of transfected HCC cells. Mechanistically, RNA immunoprecipitation and dual-luciferase reporter gene assay were performed to explore the relation between circ_0067934, miR-1290 and FOXC1 (Forkhead box C1) in HCC.
Results
The expression of circ_0004913 was down-regulated in HCC tissues and cell lines, while the overexpression of circ_0004913 attenuates the malignant behavior of HCC cells. Bioinformatics predicted that circ_0004913 interacts with miR-1290, which targeted FOXC1 mRNA. In fact, miR-1290 promoted the malignant behavior of HCC cells, while FOXC1 had the opposite effect. In addition, circ_0004913 overexpression enhanced FOXC1 expression by reducing miR-1290 expression, thereby inhibiting the proliferation of HCC cells.
Conclusions
Circ_0004913 / miR-1290 / FOXC1 regulatory axis could inhibit the progress of HCC. Our findings may provide potential new targets for the diagnosis and treatment of HCC.
Collapse
|
38
|
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5:145. [PMID: 32759948 PMCID: PMC7406508 DOI: 10.1038/s41392-020-00261-0] [Citation(s) in RCA: 759] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by most eukaryotic cells and participate in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long noncoding RNA, circular RNA, etc., which play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, we mainly summarized as followed: the role of exosome contents in cancer, focusing on proteins and noncoding RNA; the interaction between exosomes and tumor microenvironment; the mechanisms that epithelial-mesenchymal transition, invasion and migration of tumor affected by exosomes; and tumor suppression strategies based on exosomes. Finally, the application potential of exosomes in clinical tumor diagnosis and therapy is prospected, which providing theoretical supports for using exosomes to serve precise tumor treatment in the clinic.
Collapse
Affiliation(s)
- Jie Dai
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bang Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zuping He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013, Jiangsu, China.
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China. .,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
39
|
Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and Organotropism in Breast Cancer Metastasis. Cancers (Basel) 2020; 12:E1827. [PMID: 32646059 PMCID: PMC7408921 DOI: 10.3390/cancers12071827] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy for women in which one in eight women will be diagnosed with the disease in their lifetime. Despite advances made in treating primary breast cancer, there is still no effective treatment for metastatic breast cancer. Consequently, metastatic breast cancer is responsible for 90% of breast cancer-related deaths while only accounting for approximately one third of all breast cancer cases. To help develop effective treatments for metastatic breast cancer, it is important to gain a deeper understanding of the mechanisms by which breast cancer metastasizes, particularly, those underlying organotropism towards brain, bone, and lungs. In this review, we will primarily focus on the roles that circulating exosomal microRNAs (miRNAs) play in organotropism of breast cancer metastasis. Exosomes are extracellular vesicles that play critical roles in intercellular communication. MicroRNAs can be encapsulated in exosomes; cargo-loaded exosomes can be secreted by tumor cells into the tumor microenvironment to facilitate tumor-stroma interactions or released to circulation to prime distant organs for subsequent metastasis. Here, we will summarize our current knowledge on the biogenesis of exosomes and miRNAs, mechanisms of cargo sorting into exosomes, the exosomal miRNAs implicated in breast cancer metastasis, and therapeutic exosomal miRNAs.
Collapse
Affiliation(s)
- Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
40
|
Gao PF, Huang D, Wen JY, Liu W, Zhang HW. Advances in the role of exosomal non-coding RNA in the development, diagnosis, and treatment of gastric cancer (Review). Mol Clin Oncol 2020; 13:101-108. [PMID: 32714531 DOI: 10.3892/mco.2020.2068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small vesicles secreted by a variety of cells that contain vrious biological macromolecules, including RNA, non-coding RNA and protein. An increasing number of studies have demonstrated that exosomes and particularly the non-coding RNAs they contain, serve important roles in many cellular processes, including the transmission of information. It is well established that the occurrence and development of gastric cancer, one of the four most common malignant tumors worldwide, involves the transmission of information. Based on the urgent need for the elucidation of the mechanism involved in this process, as well as advances in the diagnosis and treatment of gastric cancer, numerous reports have assessed the association between non-coding RNAs in exosomes and gastric cancer. The purpose of the present review was to summarize recent evidence on certain non-coding RNAs associated with the development, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Peng-Fei Gao
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun-Yan Wen
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Liu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Wu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
41
|
Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:310-319. [PMID: 32147684 DOI: 10.1093/abbs/gmz168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is an important health problem, being the fifth most common cancer and the third leading cause of cancer-related death worldwide. Aberrant protein translation contributes to the oncogenesis and development of cancers, and upregulation of translation initiation factor eIF4A1 has been observed in several kinds of malignancies. However, the role of eIF4A1 in gastric cancer progression remains unclear. In this study, we found that the expression of eIF4A1, a component of translation initiation complex, was increased in gastric cancer. High expression of eIF4A1 was positively associated with poor tumor differentiation, late T stage, lymph node metastasis, advanced TNM stage, and poor prognosis in patients with gastric cancer. Overexpression of eIF4A1 promoted the migration and invasion of gastric cancer cells in vitro and enhanced tumor metastasis in nude mice model. Mechanism studies revealed that eIF4A1 induced epithelial-to-mesenchymal transition (EMT) of gastric cancer cells through driving the translation of SNAI1 mRNA. Together, these findings indicate that eIF4A1 promotes EMT and metastasis of gastric cancer and suggest that eIF4A1 is a potential target for the adjuvant therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Xinyin Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Walbrecq G, Lecha O, Gaigneaux A, Fougeras MR, Philippidou D, Margue C, Tetsi Nomigni M, Bernardin F, Dittmar G, Behrmann I, Kreis S. Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12030692. [PMID: 32183388 PMCID: PMC7140034 DOI: 10.3390/cancers12030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.
Collapse
Affiliation(s)
- Geoffroy Walbrecq
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Odile Lecha
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Miriam R. Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
- Doctoral School in Science and Engineering (DSSE), Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - François Bernardin
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Gunnar Dittmar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Iris Behrmann
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Correspondence:
| |
Collapse
|