1
|
Janiczek-Polewska M, Kolenda T, Poter P, Jagiełło I, Kozłowska-Masłoń J, Regulska K, Malicki J, Marszałek A. Nucleus Accumbens Associated Protein 1 in Cancers-The Real Value. Int J Mol Sci 2024; 25:13632. [PMID: 39769395 PMCID: PMC11728236 DOI: 10.3390/ijms252413632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Malignant tumors are a leading cause of death worldwide, second only to cardiovascular disease. They occur in every population and have a high risk of mortality. The etiopathogenesis of malignant tumors is diverse and there are still many unknowns, leading to huge diagnostic and therapeutic challenges. Therefore, the search for ideal diagnostic and therapeutic agents is ongoing. One of the promising factors affecting cancer is the nucleus accumbens associated protein 1 (NACC1). It is a transcriptional coregulator. Moreover, it plays a multifaceted role in promoting tumorigenesis. NACC1 expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from the University of Alabama at Birmingham Cancer (UALCAN) database, and the expression data were interconnected with clinicopathological parameters. All statistical analyses were conducted using GraphPad Prism and Statistica. The results revealed that NACC1 was expressed in almost all of the analyzed cancers, and its expression level correlates with different clinicopathological parameters. This study demonstrates that NACC1 is potentially involved in the pathogenesis, invasion, and immune response associated with many cancers. However, NACC1 is not a suitable candidate as a diagnostic biomarker as it is not specific for any type of malignancy and there are discrepancies in its expression in relation to many clinicopathological parameters. The implementation of NACC1 as a therapeutic target may improve the effectiveness of cancer treatments.
Collapse
Affiliation(s)
- Marlena Janiczek-Polewska
- Department of Clinical Oncology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Paulina Poter
- Department of Clinical Pathology, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Inga Jagiełło
- Department of Clinical Pathology, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznan, Poland
| | - Katarzyna Regulska
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Pharmacy, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Andrzej Marszałek
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Zheng Y, Huang X. Identification of pyroptosis-associated miRNAs in the immunoscape and prognosis of hepatocellular carcinoma. BMC Cancer 2024; 24:1513. [PMID: 39695414 PMCID: PMC11657507 DOI: 10.1186/s12885-024-13276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most prevalent types of liver malignancy and poses a severe threat to global health. Despite recent improvements in therapeutic approaches, treatment options for patients with advanced or recurrent HCC are still limited. MATERIALS AND METHODS Our study analyzed miRNA differential expression using data from hepatocellular carcinoma patients in the Cancer Genome Atlas. Pyroptosis-related genes were identified from gene cards. Differential expression of miRNAs was analyzed using DESeq2 and visualized using ggplot2 and pheatmap. A prognostic risk model for pyroptosis-associated miRNAs was constructed using LASSO regression and validated by principal component analysis, Kaplan-Meier survival and ROC curve analysis. We also performed gene and pathway enrichment analysis. Immune cell infiltration and function in HCC were assessed using single-sample genomic enrichment analysis, and correlations with immune cells and function were explored. Also, CCK-8 assay as well as migration and invasion assays were performed after knockdown of miR-6844. RESULTS We have established and validated a prognostic risk model based on ten DEmiRNAs, which is important for the survival of HCC patients. Significant changes in immune cell infiltration and immune function were also found in high-risk patients. It also demonstrated that knockdown of miR-6844 inhibited HCC cell proliferation, migration and invasion, highlighting its role in HCC progression. CONCLUSION Our study reveals the implications of pyroptosis-associated differential miRNAs on the prognosis of patients with hepatocellular carcinoma and provides a foundation for novel HCC therapies, especially immunotherapy.
Collapse
Affiliation(s)
- Yuting Zheng
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Huang
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Xu B, Jia W, Feng Y, Wang J, Wang J, Zhu D, Xu C, Liang L, Ding W, Zhou Y, Kong L. Exosome-transported circHDAC1_004 Promotes Proliferation, Migration, and Angiogenesis of Hepatocellular Carcinoma by the miR-361-3p/NACC1 Axis. J Clin Transl Hepatol 2023; 11:1079-1093. [PMID: 37577235 PMCID: PMC10412708 DOI: 10.14218/jcth.2022.00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Hepatocellular carcinoma (HCC) is among the most common malignant tumors globally. Circular RNAs (circRNAs), as a type of noncoding RNAs, reportedly participate in various tumor biological processes. However, the role of circHDAC1_004 in HCC remains unclear. Thus, we aimed to explore the role and the underlying mechanisms of circHDAC1_004 in the development and progression of HCC. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect circHDAC1_004 expression (circ_0005339) in HCC. Sanger sequencing and agarose gel electrophoresis were used to determine the structure of circHDAC1_004. In vitro and in vivo experiments were used to determine the biological function of circHDAC1_004 in HCC. Herein, qRT-PCR, RNA immunoprecipitation, western blotting, and a luciferase reporter assay were used to explore the relationships among circHDAC1_004, miR-361-3p, and NACC1. Results circHDAC1_004 was upregulated in HCC and significantly associated with poor overall survival. circHDAC1_004 promoted HCC cell proliferation, stemness, migration, and invasion. In addition, circHDAC1_004 upregulated human umbilical vein endothelial cells (HUVECs) and promoted angiogenesis through exosomes. circHDAC1_004 promoted NACC1 expression and stimulated the epithelial-mesenchymal transition pathway by sponging miR-361-3p. Conclusions We found that circHDAC1_004 overexpression enhanced the proliferation, stemness, and metastasis of HCC via the miR-361-3p/NACC1 axis and promoted HCC angiogenesis through exosomes. Our findings may help develop a possible therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Bin Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Yanzhi Feng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of health, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Litao Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| | - Yongping Zhou
- Jiangnan University Medical Center, JUMC, Department of Hepatobiliary, Wuxi, Jiangsu, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Jesenko T, Brezar SK, Cemazar M, Biasin A, Tierno D, Scaggiante B, Grassi M, Grassi C, Dapas B, Truong NH, Abrami M, Zanconati F, Bonazza D, Rizzolio F, Parisi S, Pastorin G, Grassi G. Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches. Pharmaceutics 2023; 15:1249. [PMID: 37111734 PMCID: PMC10145575 DOI: 10.3390/pharmaceutics15041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
Collapse
Affiliation(s)
- Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.J.); (S.K.B.); (M.C.)
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.J.); (S.K.B.); (M.C.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.J.); (S.K.B.); (M.C.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy; (A.B.); (M.G.); (M.A.)
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (B.S.); (B.D.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (B.S.); (B.D.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy; (A.B.); (M.G.); (M.A.)
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, I-34149 Trieste, Italy;
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (B.S.); (B.D.)
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 70000, Vietnam;
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy; (A.B.); (M.G.); (M.A.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy; (F.Z.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy; (F.Z.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, I-33081 Aviano, Italy;
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I-30172 Venezia, Italy;
| | - Salvatore Parisi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I-30172 Venezia, Italy;
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34149 Trieste, Italy
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (B.S.); (B.D.)
| |
Collapse
|
7
|
Mechanism of miR-760 Reversing Lung Cancer Immune Escape by Downregulating IDO1 and Eliminating Regulatory T Cells Based on Mathematical Biology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2960773. [PMID: 35872931 PMCID: PMC9303114 DOI: 10.1155/2022/2960773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
In cancer biology, mathematical models have become indispensable. They are useful for gaining a mechanistic grasp of cancer's dynamic processes. In cancer research, mathematical modelling approaches are becoming more common. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments (Altrock et al., 2015). Background. MicroRNA-760 (miR-760), as an early discovered tumor suppressor gene, is poorly expressed in lung cancer (LC). Indoleamine 2,3-dioxygenase 1 (IDO1), as an important regulator of T cell function, is active in immune tolerance. We discovered that miR-760 has a targeted relationship with IDO1, but the regulatory mechanism between miR-760 and IDO1 is still unclear. Method. The miR-760 and IDO1 levels in NSCLC were tested via real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting (WB). Cell growth was tested by CCK8, and NSCLC cell migration and invasion were analyzed through Transwell analysis. The binding conditions and target gene of miR-451 in NSCLC cells were determined via double luciferase reporter gene. The CD8+ T and CD4+ T cell ratio in CD45+cells was assessed by flow cytometry. Results. qRT-PCR revealed that miR-760 was low-expressed and IDO2 was highly expressed in LC. miR-760 mimics suppressed cell growth, invasiveness, and migration. We also observed that miR-760 could downregulate the IDO1 protein level. Significantly, we revealed that miR-760 could inhibit CD8+ T cell apoptosis by controlling IDO1 enzyme function. Conclusion. Our findings show that miR-760 inhibits CD8+ T cell responses in LC through regulating IDO1, laying the groundwork for the development of novel vaccination therapies for the treatment of LC.
Collapse
|
8
|
He W, Zhu X, Tang X, Xiang X, Yu J, Sun H. Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma. Anticancer Drugs 2022; 33:e336-e348. [PMID: 34419960 DOI: 10.1097/cad.0000000000001211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) infection is the main trigger of hepatocellular carcinoma (HCC). Circular RNA plays an indispensable role in cancer development, and this study aimed to disclose the function and mechanism of circ_0027089 in HBV-related HCC. The expression levels of circ_0027089, miR-136-5p and nucleus accumbens associated protein 1 (NACC1) mRNA were measured by quantitative real-time PCR, and the protein level of NACC1 was detected by western blot. For functional analyses, cell proliferation was assessed by cell counting kit-8 assay and colony formation assay. Cell apoptosis and cell cycle were detected by flow cytometry assay, and cell apoptosis was also assessed by caspase 3/7 activity. The capacities of migration and invasion were evaluated by wound healing assay and transwell assay, respectively. The predicted relationship between miR-136-5p and circ_0027089 or NACC1 was validated by dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay. Animal experiments were performed in nude mice to explore the role of circ_0027089 in vivo. Circ_0027089 expression and NACC1 expression were elevated, while miR-136-5p expression was decreased in HBV-related HCC tissues and cells. In function, circ_0027089 knockdown inhibited HepG2.2.15 and HepAD38 (tet-off) cell proliferation, migration and invasion but induced cell cycle arrest and apoptosis, while circ_0027089 overexpression played the reversed effects. For mechanism exploration, miR-136-5p was a target of circ_0027089, and miR-136-5p deficiency could reverse the role of circ_0027089 knockdown. Circ_0027089 functioned as an oncogene to promote the development of HBV-related HCC by regulating NACC1 via competitively targeting miR-136-5p.
Collapse
Affiliation(s)
- Wei He
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Xingyang Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Anhui
| | - Xueyan Tang
- Department of Respiratory Medicine, Lichuan People's Hospital, Lichuan, China
| | - Xianhui Xiang
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Jian Yu
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Huirong Sun
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| |
Collapse
|
9
|
Cao Z, Chen H, Mei X, Li X. Silencing of NACC1 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma cells via regulating the AKT/mTOR signaling pathway. Oncol Lett 2021; 22:828. [PMID: 34691255 PMCID: PMC8527823 DOI: 10.3892/ol.2021.13088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Nucleus accumbens-associated protein 1 (NACC1) has been reported to serve as an oncogenic role in several types of cancer; however, its role in nasopharyngeal carcinoma (NPC) remains to be determined. The present study aimed to investigate the role of NACC1 in NPC and elucidate the underlying mechanisms. Therefore, NACC1 expression in the normal nasopharyngeal epithelial cell line, NP69, and various NPC cell lines was determined by reverse transcription-quantitative PCR and western blot analyses. NACC1 expression was silenced in the NPC SUNE-1 cell line by transfection with a short hairpin RNA. Cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were then evaluated using MTT, colony formation, wound healing, Transwell and western blot assays, respectively. SC79 was employed to activate AKT expression in NACC1-silenced SUNE-1 cells, and the aforementioned cellular processes were observed. The results revealed that NACC1 expression was upregulated in NPC cell lines. NACC1-knocdown inhibited SUNE-1 cell proliferation, migration, invasion and EMT. Moreover, the levels of phosphorylated AKT and mTOR were decreased upon NACC1 silencing. Mechanistically, the presence of SC79 significantly blocked all the effects of NACC1-knockdown on SUNE-1 cells. The findings of the present study demonstrated that NACC1-knockdown effectively suppressed NPC cell proliferation, migration and invasion by inhibiting the activation of the AKT/mTOR signaling pathway. NACC1 may thus serve as a potential target for the diagnosis and therapy of NPC.
Collapse
Affiliation(s)
- Zhengyong Cao
- Department of Otolaryngology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Hong Chen
- Department of Nephrology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Xiaoli Mei
- Department of Science and Education, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Xiaobo Li
- Department of Otolaryngology, Chongqing Qijiang District People's Hospital, Chongqing 401420, P.R. China
| |
Collapse
|